Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts.
F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts.
Curr Protoc. 2024 Oct;4(10):e70022. doi: 10.1002/cpz1.70022.
Three-dimensional (3D) cerebral cortical organoids are popular in vitro cellular model systems widely used to study human brain development and disease, compared to traditional stem cell-derived methods that use two-dimensional (2D) monolayer cultures. Despite the advancements made in protocol development for cerebral cortical organoid derivation over the past decade, limitations due to biological, mechanistic, and technical variables remain in generating these complex 3D cellular systems. Building from our previously established differentiation system, we have made modifications to our existing 3D cerebral cortical organoid protocol that resolve several of these technical and biological challenges when working with diverse groups of human induced pluripotent stem cell (hiPSC) lines. This improved protocol blends a 2D monolayer culture format for the specification of neural stem cells and expansion of neuroepithelial progenitor cells with a 3D system for improved self-aggregation and subsequent organoid development. Furthermore, this "hybrid" approach is amenable to both an accelerated cerebral cortical organoid protocol as well as an alternative long-term differentiation protocol. In addition to establishing a hybrid technical format, this protocol also offers phenotypic and morphological characterization of stage-specific cellular profiles using antibodies and fluorescent-based dyes for live cell imaging. © 2024 Wiley Periodicals LLC. Basic Protocol 1: hiPSC-based 2D monolayer specification into neural stem cells (NSCs) Basic Protocol 2: Serial passaging and 2D monolayer expansion of neuroepithelial progenitor cells (NPCs) Support Protocol 1: Direct cryopreservation and rapid thawing of NSCs and NPCs Basic Protocol 3: Bulk aggregation of 3D neurospheres and accelerated cerebral cortical organoid differentiation Alternate Protocol 1: Bulk aggregation of 3D neurospheres and long-term cerebral cortical organoid differentiation Support Protocol 2: High-throughput 3D neurosphere formation and 2D neurosphere migration assay Support Protocol 3: LIVE/DEAD stain cell imaging assay of 3D neurospheres Support Protocol 4: NeuroFluor NeuO live cell dye for 3D cerebral cortical organoids.
三维(3D)大脑皮质类器官在体外细胞模型系统中广泛应用,用于研究人类大脑发育和疾病,与传统的干细胞衍生方法相比,后者使用二维(2D)单层培养。尽管在过去十年中,大脑皮质类器官衍生的方案开发取得了进展,但在生成这些复杂的 3D 细胞系统时,由于生物学、机械和技术变量的限制仍然存在。在我们之前建立的分化系统的基础上,我们对现有的 3D 大脑皮质类器官方案进行了修改,解决了在使用不同群体的人类诱导多能干细胞(hiPSC)系时遇到的一些技术和生物学挑战。该改进方案将 2D 单层培养格式用于神经干细胞的规范和神经上皮祖细胞的扩增与 3D 系统相结合,以提高自我聚集和随后的类器官发育能力。此外,这种“混合”方法适用于加速大脑皮质类器官方案和替代的长期分化方案。除了建立混合技术格式外,该方案还使用针对特定细胞表型的抗体和荧光基染料进行活细胞成像,对阶段特异性细胞特征进行表型和形态学描述。©2024Wiley Periodicals LLC. 基本方案 1:基于 hiPSC 的 2D 单层神经干细胞(NSCs)规范 基本方案 2:神经上皮祖细胞(NPCs)的连续传代和 2D 单层扩增 支持方案 1:NSCs 和 NPCs 的直接冷冻保存和快速解冻 基本方案 3:3D 神经球的批量聚集和加速大脑皮质类器官分化 替代方案 1:3D 神经球的批量聚集和长期大脑皮质类器官分化 支持方案 2:高通量 3D 神经球形成和 2D 神经球迁移分析 支持方案 3:3D 神经球的 LIVE/DEAD 染色细胞成像分析 支持方案 4:NeuroFluor NeuO 活细胞染料用于 3D 大脑皮质类器官。