Suppr超能文献

多中心验证脑 MRI 上钆增强边缘病变的自动检测在多发性硬化症中的应用。

Multicenter validation of automated detection of paramagnetic rim lesions on brain MRI in multiple sclerosis.

机构信息

Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.

School of Medicine, Georgetown University, Washington, DC, USA.

出版信息

J Neuroimaging. 2024 Nov-Dec;34(6):750-757. doi: 10.1111/jon.13242. Epub 2024 Oct 15.

Abstract

BACKGROUND AND PURPOSE

Paramagnetic rim lesions (PRLs) are an MRI biomarker of chronic inflammation in people with multiple sclerosis (MS). PRLs may aid in the diagnosis and prognosis of MS. However, manual identification of PRLs is time-consuming and prone to poor interrater reliability. To address these challenges, the Automated Paramagnetic Rim Lesion (APRL) algorithm was developed to automate PRL detection. The primary objective of this study is to evaluate the accuracy of APRL for detecting PRLs in a multicenter setting.

METHODS

We applied APRL to a multicenter dataset, which included 3-Tesla MRI acquired in 92 participants (43 with MS, 14 with clinically isolated syndrome [CIS]/radiologically isolated syndrome [RIS], 35 without RIS/CIS/MS). Subsequently, we assessed APRL's performance by comparing its results with manual PRL assessments carried out by a team of trained raters.

RESULTS

Among the 92 participants, expert raters identified 5637 white matter lesions and 148 PRLs. The automated segmentation method successfully captured 115 (78%) of the manually identified PRLs. Within these 115 identified lesions, APRL differentiated between manually identified PRLs and non-PRLs with an area under the curve (AUC) of .73 (95% confidence interval [CI]: [.68, .78]). At the subject level, the count of APRL-identified PRLs predicted MS diagnosis with an AUC of .69 (95% CI: [.57, .81]).

CONCLUSION

Our study demonstrated APRL's capability to differentiate between PRLs and lesions without paramagnetic rims in a multicenter study. Automated identification of PRLs offers greater efficiency over manual identification and could facilitate large-scale assessments of PRLs in clinical trials.

摘要

背景与目的

顺磁边缘病变(PRL)是多发性硬化症(MS)患者慢性炎症的 MRI 生物标志物。PRL 可能有助于 MS 的诊断和预后。然而,手动识别 PRL 既耗时又容易导致观察者间可靠性差。为了解决这些挑战,开发了自动顺磁边缘病变(APRL)算法来自动检测 PRL。本研究的主要目的是评估 APRL 在多中心环境中检测 PRL 的准确性。

方法

我们将 APRL 应用于一个多中心数据集,该数据集包括 92 名参与者的 3-Tesla MRI(43 名 MS 患者、14 名临床孤立综合征 [CIS]/放射孤立综合征 [RIS]、35 名无 RIS/CIS/MS)。随后,我们通过将 APRL 的结果与由一组经过培训的评估者进行的手动 PRL 评估进行比较来评估 APRL 的性能。

结果

在 92 名参与者中,专家评估者识别出 5637 个白质病变和 148 个 PRL。自动分割方法成功捕获了 115 个(78%)手动识别的 PRL。在这些识别出的病变中,APRL 区分了手动识别的 PRL 和非 PRL 的曲线下面积(AUC)为.73(95%置信区间 [CI]:[.68,.78])。在个体水平上,APRL 识别的 PRL 计数预测 MS 诊断的 AUC 为.69(95%CI:[.57,.81])。

结论

我们的研究表明,APRL 能够在多中心研究中区分 PRL 和无顺磁边缘病变。PRL 的自动识别比手动识别更有效率,并可以促进临床试验中 PRL 的大规模评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验