The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia.
Genome. 2024 Dec 1;67(12):464-481. doi: 10.1139/gen-2024-0061. Epub 2024 Oct 16.
Heat stress affects the growth and development of Brassicaceae crops. Plant breeders aim to mitigate the effects of heat stress by selecting for heat stress tolerance, but the genes responsible for heat stress in Brassicaceae remain largely unknown. During heat stress, heat shock proteins (HSPs) function as molecular chaperones to aid in protein folding, and heat shock transcription factors (HSFs) serve as transcriptional regulators of HSP expression. We identified 5002 heat shock related genes, including HSPs and HSFs, across 32 genomes in Brassicaceae. Among these, 3347 genes were duplicated, with segmented duplication primarily contributing to their expansion. We identified 466 physical gene clusters, including 240 homogenous clusters and 226 heterogeneous clusters, shedding light on the organization of heat shock related genes. Notably, 37 genes were co-located with published thermotolerance quantitative trait loci, which supports their functional role in conferring heat stress tolerance. This study provides a comprehensive resource for the identification of functional Brassicaceae heat shock related genes, elucidates their clustering and duplication patterns and establishes the genomic foundation for future heat tolerance research. We hypothesise that genetic variants in HSP and HSF genes in certain species have potential for improving heat stress tolerance in Brassicaceae crops.
热应激会影响十字花科作物的生长和发育。植物育种者旨在通过选择耐热性来减轻热应激的影响,但负责十字花科热应激的基因在很大程度上仍然未知。在热应激期间,热休克蛋白(HSPs)作为分子伴侣发挥作用,帮助蛋白质折叠,而热休克转录因子(HSFs)则作为 HSP 表达的转录调节剂。我们在 32 个十字花科基因组中鉴定出了 5002 个与热应激相关的基因,包括 HSPs 和 HSFs。其中,3347 个基因是重复的,分段重复主要导致了它们的扩展。我们鉴定出了 466 个物理基因簇,包括 240 个同质簇和 226 个异质簇,揭示了热应激相关基因的组织方式。值得注意的是,有 37 个基因与已发表的耐热性数量性状位点共定位,这支持了它们在赋予热应激耐受性方面的功能作用。本研究为鉴定功能上的十字花科热应激相关基因提供了全面的资源,阐明了它们的聚类和重复模式,并为未来的耐热性研究奠定了基因组基础。我们假设某些物种中 HSP 和 HSF 基因的遗传变异有可能提高十字花科作物的耐热性。