Suppr超能文献

量化人类线粒体基因组中的约束。

Quantifying constraint in the human mitochondrial genome.

机构信息

Department of Genetics, Yale School of Medicine, New Haven, CT, USA.

Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.

出版信息

Nature. 2024 Nov;635(8038):390-397. doi: 10.1038/s41586-024-08048-x. Epub 2024 Oct 16.

Abstract

Mitochondrial DNA (mtDNA) has an important yet often overlooked role in health and disease. Constraint models quantify the removal of deleterious variation from the population by selection and represent powerful tools for identifying genetic variation that underlies human phenotypes. However, nuclear constraint models are not applicable to mtDNA, owing to its distinct features. Here we describe the development of a mitochondrial genome constraint model and its application to the Genome Aggregation Database (gnomAD), a large-scale population dataset that reports mtDNA variation across 56,434 human participants. Specifically, we analyse constraint by comparing the observed variation in gnomAD to that expected under neutrality, which was calculated using a mtDNA mutational model and observed maximum heteroplasmy-level data. Our results highlight strong depletion of expected variation, which suggests that many deleterious mtDNA variants remain undetected. To aid their discovery, we compute constraint metrics for every mitochondrial protein, tRNA and rRNA gene, which revealed a range of intolerance to variation. We further characterize the most constrained regions within genes through regional constraint and identify the most constrained sites within the entire mitochondrial genome through local constraint, which showed enrichment of pathogenic variation. Constraint also clustered in three-dimensional structures, which provided insight into functionally important domains and their disease relevance. Notably, we identify constraint at often overlooked sites, including in rRNA and noncoding regions. Last, we demonstrate that these metrics can improve the discovery of deleterious variation that underlies rare and common phenotypes.

摘要

线粒体 DNA(mtDNA)在健康和疾病中具有重要但常被忽视的作用。约束模型通过选择量化了从群体中去除有害变异的程度,是识别导致人类表型的遗传变异的有力工具。然而,由于 mtDNA 的独特特征,核约束模型不适用于 mtDNA。在这里,我们描述了一种线粒体基因组约束模型的开发及其在大规模人群数据集 Genome Aggregation Database(gnomAD)中的应用,该数据集报告了 56434 名人类参与者的 mtDNA 变异。具体来说,我们通过将 gnomAD 中的观察到的变异与中性条件下预期的变异进行比较来分析约束,这是通过使用 mtDNA 突变模型和观察到的最大异质性水平数据计算得出的。我们的结果突出了预期变异的大量消耗,这表明许多有害的 mtDNA 变体仍然未被发现。为了帮助发现这些变体,我们为每个线粒体蛋白、tRNA 和 rRNA 基因计算了约束指标,这些指标显示出对变异的不同容忍程度。我们进一步通过区域约束来描述基因内最受约束的区域,并通过局部约束来确定整个线粒体基因组内最受约束的位点,这显示出致病性变异的富集。约束也在三维结构中聚集,这提供了对功能重要域及其疾病相关性的深入了解。值得注意的是,我们在 rRNA 和非编码区域等经常被忽视的位点发现了约束。最后,我们证明这些指标可以提高对稀有和常见表型的基础有害变异的发现。

相似文献

1
Quantifying constraint in the human mitochondrial genome.
Nature. 2024 Nov;635(8038):390-397. doi: 10.1038/s41586-024-08048-x. Epub 2024 Oct 16.
2
A genomic mutational constraint map using variation in 76,156 human genomes.
Nature. 2024 Jan;625(7993):92-100. doi: 10.1038/s41586-023-06045-0. Epub 2023 Dec 6.
5
Mitochondrial DNA variation across 56,434 individuals in gnomAD.
Genome Res. 2022 Mar;32(3):569-582. doi: 10.1101/gr.276013.121. Epub 2022 Jan 24.
6
A comprehensive collection of annotations to interpret sequence variation in human mitochondrial transfer RNAs.
BMC Bioinformatics. 2016 Nov 8;17(Suppl 12):338. doi: 10.1186/s12859-016-1193-4.
7
Evolution along the mutation gradient in the dynamic mitochondrial genome of salamanders.
Genome Biol Evol. 2013;5(9):1652-60. doi: 10.1093/gbe/evt119.
9
Unusual mtDNA Control Region Length Heteroplasmy in the COS-7 Cell Line.
Genes (Basel). 2020 May 30;11(6):607. doi: 10.3390/genes11060607.
10
Polymorphic sites and the mechanism of evolution in human mitochondrial DNA.
Genetics. 1984 Mar;106(3):479-99. doi: 10.1093/genetics/106.3.479.

引用本文的文献

1
Alterations in mitochondrial base editors enhance targeted editing efficiency for mouse model generation.
Mol Ther Nucleic Acids. 2025 Aug 11;36(3):102678. doi: 10.1016/j.omtn.2025.102678. eCollection 2025 Sep 9.
2
Allele frequency selection and no age-related increase in human oocyte mitochondrial mutations.
Sci Adv. 2025 Aug 8;11(32):eadw4954. doi: 10.1126/sciadv.adw4954. Epub 2025 Aug 6.
5
High resolution class I HLA-A, -B, and -C diversity in Eastern and Southern African populations.
Sci Rep. 2025 Jul 2;15(1):23667. doi: 10.1038/s41598-025-06704-4.
7
Exploring the Impact of Mitonuclear Discordance on Disease in Latin American Admixed Populations.
Genes (Basel). 2025 May 27;16(6):638. doi: 10.3390/genes16060638.
8
Mechanism of age-related accumulation of mitochondrial DNA mutations in human blood.
bioRxiv. 2025 May 28:2025.05.25.655566. doi: 10.1101/2025.05.25.655566.
9
Deleterious mitochondrial heteroplasmies exhibit increased longitudinal change in variant allele fraction.
iScience. 2025 May 6;28(6):112590. doi: 10.1016/j.isci.2025.112590. eCollection 2025 Jun 20.

本文引用的文献

2
Combination of common mtDNA variants results in mitochondrial dysfunction and a connective tissue dysregulation.
Proc Natl Acad Sci U S A. 2022 Nov 8;119(45):e2212417119. doi: 10.1073/pnas.2212417119. Epub 2022 Nov 2.
3
Mitochondrial DNA is a major source of driver mutations in cancer.
Trends Cancer. 2022 Dec;8(12):1046-1059. doi: 10.1016/j.trecan.2022.08.001. Epub 2022 Aug 27.
5
A bioinformatics pipeline for estimating mitochondrial DNA copy number and heteroplasmy levels from whole genome sequencing data.
NAR Genom Bioinform. 2022 May 17;4(2):lqac034. doi: 10.1093/nargab/lqac034. eCollection 2022 Jun.
6
MitoVisualize: a resource for analysis of variants in human mitochondrial RNAs and DNA.
Bioinformatics. 2022 May 13;38(10):2967-2969. doi: 10.1093/bioinformatics/btac216.
7
CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA.
Nat Biotechnol. 2022 Sep;40(9):1378-1387. doi: 10.1038/s41587-022-01256-8. Epub 2022 Apr 4.
8
Mitochondrial DNA variation across 56,434 individuals in gnomAD.
Genome Res. 2022 Mar;32(3):569-582. doi: 10.1101/gr.276013.121. Epub 2022 Jan 24.
9
Distance-based reconstruction of protein quaternary structures from inter-chain contacts.
Proteins. 2022 Mar;90(3):720-731. doi: 10.1002/prot.26269. Epub 2021 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验