Suppr超能文献

CD44 介导的细胞黏附中的抓键形成的双向变构机制。

Bidirectional Allostery Mechanism in Catch-Bond Formation of CD44 Mediated Cell Adhesion.

机构信息

Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.

Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China.

出版信息

J Phys Chem Lett. 2024 Oct 31;15(43):10786-10794. doi: 10.1021/acs.jpclett.4c02598. Epub 2024 Oct 21.

Abstract

Catch-bonds, whereby noncovalent ligand-receptor interactions are counterintuitively reinforced by tensile forces, play a major role in cell adhesion under mechanical stress. A basic prerequisite for catch-bond formation, as implicated in classic catch-bond models, is that force-induced remodeling of the ligand binding interface occurs prior to bond rupture. However, what strategy receptor proteins utilize to meet such specific kinetic control remains elusive. Here we report a bidirectional allostery mechanism of catch-bond formation based on theoretical and molecular dynamics simulation studies. Binding of ligand allosterically reduces the threshold force for unlocking of otherwise stably folded force-sensing element (i.e., forward allostery), so that a much smaller tensile force can trigger the conformational switching of receptor protein to high binding-strength state via backward allosteric coupling before bond rupture. Such bidirectional allostery fulfills the specific kinetic control required by catch-bond formation and is likely to be commonly utilized in cell adhesion. The essential thermodynamic and kinetic features of receptor proteins essential for catch-bond formation were identified.

摘要

牵锁键(catch-bonds),即非共价配体-受体相互作用通过张力反直觉地增强,在机械应力下的细胞黏附中起着重要作用。如经典牵锁键模型所暗示的,牵锁键形成的一个基本前提是,在键断裂之前,力诱导的配体结合界面重塑发生。然而,受体蛋白利用何种策略来满足这种特定的动力学控制仍然难以捉摸。在这里,我们基于理论和分子动力学模拟研究报告了一种双向变构的牵锁键形成机制。配体的变构结合降低了否则稳定折叠的力感应元件解锁的阈值力(即正向变构),因此,在键断裂之前,通过向后变构耦合,一个小得多的张力就能触发受体蛋白的构象转换,使其进入高结合强度状态。这种双向变构满足了牵锁键形成所需的特定动力学控制,并且很可能在细胞黏附中普遍存在。确定了用于牵锁键形成的受体蛋白的基本热力学和动力学特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验