Suppr超能文献

基于信念规则的自组织多时态传感器人体活动识别系统

Belief-Rule-Based System With Self-Organizing and Multi-Temporal Modeling for Sensor-Based Human Activity Recognition.

作者信息

Yang Long-Hao, Ye Fei-Fei, Nugent Chris, Liu Jun, Wang Ying-Ming

出版信息

IEEE J Biomed Health Inform. 2025 Feb;29(2):1062-1073. doi: 10.1109/JBHI.2024.3485871. Epub 2025 Feb 10.

Abstract

Smart environment is an efficient and cost-effective way to afford intelligent supports for the elderly people. Human activity recognition is a crucial aspect of the research field of smart environments, and it has attracted widespread attention lately. The goal of this study is to develop an effective sensor-based human activity recognition model based on the belief-rule-based system (BRBS), which is one of representative rule-based expert systems. Specially, a new belief rule base (BRB) modeling approach is proposed by taking into account the self- organizing rule generation method and the multi-temporal rule representation scheme, in order to address the problem of combination explosion that existed in the traditional BRB modelling procedure and the time correlation found in continuous sensor data in chronological order. The new BRB modeling approach is so called self-organizing and multi-temporal BRB (SOMT-BRB) modeling procedure. A case study is further deducted to validate the effectiveness of the SOMT-BRB modeling procedure. By comparing with some conventional BRBSs and classical activity recognition models, the results show a significant improvement of the BRBS in terms of the number of belief rules, modelling efficiency, and activity recognition accuracy.

摘要

智能环境是为老年人提供智能支持的一种高效且经济高效的方式。人类活动识别是智能环境研究领域的一个关键方面,最近受到了广泛关注。本研究的目标是基于基于置信规则的系统(BRBS)开发一种有效的基于传感器的人类活动识别模型,该系统是基于规则的代表性专家系统之一。特别地,考虑到自组织规则生成方法和多时间规则表示方案,提出了一种新的置信规则库(BRB)建模方法,以解决传统BRB建模过程中存在的组合爆炸问题以及按时间顺序在连续传感器数据中发现的时间相关性问题。这种新的BRB建模方法被称为自组织和多时间BRB(SOMT-BRB)建模过程。进一步进行了案例研究以验证SOMT-BRB建模过程的有效性。通过与一些传统的BRBS和经典活动识别模型进行比较,结果表明BRBS在置信规则数量、建模效率和活动识别准确性方面有显著提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验