Risthaus Lennart, Schneider Matti
Institute of Engineering Mathematics, University of Duisburg-Essen, Essen, Germany.
Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany.
Comput Mech. 2024;74(5):1089-1113. doi: 10.1007/s00466-024-02469-1. Epub 2024 Jun 7.
We discuss how Dirichlet boundary conditions can be directly imposed for the Moulinec-Suquet discretization on the boundary of rectangular domains in iterative schemes based on the fast Fourier transform (FFT) and computational homogenization problems in mechanics. Classically, computational homogenization methods based on the fast Fourier transform work with periodic boundary conditions. There are applications, however, when Dirichlet (or Neumann) boundary conditions are required. For thermal homogenization problems, it is straightforward to impose such boundary conditions by using discrete sine (and cosine) transforms instead of the FFT. This approach, however, is not readily extended to mechanical problems due to the appearance of mixed derivatives in the Lamé operator of elasticity. Thus, Dirichlet boundary conditions are typically imposed either by using Lagrange multipliers or a "buffer zone" with a high stiffness. Both strategies lead to formulations which do not share the computational advantages of the original FFT-based schemes. The work at hand introduces a technique for imposing Dirichlet boundary conditions directly without the need for indefinite systems. We use a formulation on the deformation gradient-also at small strains-and employ the Green's operator associated to the vector Laplacian. Then, we develop the Moulinec-Suquet discretization for Dirichlet boundary conditions-requiring carefully selected weights at boundary points-and discuss the seamless integration into existing FFT-based computational homogenization codes based on dedicated discrete sine/cosine transforms. The article culminates with a series of well-chosen numerical examples demonstrating the capabilities of the introduced technology.
我们讨论了如何在基于快速傅里叶变换(FFT)的迭代格式中,针对矩形域边界上的Moulinec - Suquet离散化直接施加狄利克雷边界条件,以及力学中的计算均匀化问题。传统上,基于快速傅里叶变换的计算均匀化方法适用于周期性边界条件。然而,在某些应用中,需要狄利克雷(或诺伊曼)边界条件。对于热均匀化问题,通过使用离散正弦(和余弦)变换而非FFT来施加此类边界条件很直接。然而,由于弹性拉梅算子中出现混合导数,这种方法不易扩展到力学问题。因此,狄利克雷边界条件通常要么通过使用拉格朗日乘子施加,要么通过具有高刚度的“缓冲区”施加。这两种策略都会导致公式化表述无法共享基于FFT的原始格式的计算优势。本文介绍了一种无需不定系统即可直接施加狄利克雷边界条件的技术。我们在变形梯度(即使在小应变情况下)上使用一种公式化表述,并采用与向量拉普拉斯算子相关的格林算子。然后,我们针对狄利克雷边界条件开发了Moulinec - Suquet离散化(需要在边界点精心选择权重),并讨论了如何基于专用离散正弦/余弦变换无缝集成到现有的基于FFT的计算均匀化代码中。本文最后给出了一系列精心挑选的数值示例,展示了所引入技术的能力。