Suppr超能文献

使用广义分形分数算子对无症状衣原体感染进行定性和混沌分析的疫苗接种。

Chlamydia infection with vaccination asymptotic for qualitative and chaotic analysis using the generalized fractal fractional operator.

作者信息

Nisar Kottakkaran Sooppy, Farman Muhammad, Hincal Evren, Hasan Ali, Abbas Perwasha

机构信息

Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.

Faculty of Arts and Sciences, Department of Mathematics, Near East University, Northern Cyprus, Turkey.

出版信息

Sci Rep. 2024 Oct 29;14(1):25938. doi: 10.1038/s41598-024-77567-4.

Abstract

In this work, we solve a system of fractional differential equations utilizing a Mittag-Leffler type kernel through a fractal fractional operator with two fractal and fractional orders. A six-chamber model with a single source of chlamydia is studied using the concept of fractal fractional derivatives with nonsingular and nonlocal fading memory. The fractal fractional model of the Chlamydia system can be solved by using the characteristics of a non-decreasing and compact mapping. A suggested model with the Lipschitz criteria and linear growth is studied both qualitatively and quantitatively, taking into account boundedness, uniqueness, and positive solutions at equilibrium points with Leray-Schauder results under time scale concepts. We examined the framework of local and global stability and insight into Lyapunov function properties for the infectious disease model. Chaos Control will employ the regulate for linear responses approach to stabilize the system following its equilibrium points. This will take into consideration a fractional order framework with a managed design, where solutions are bounded in the feasible domain and have a greater impact at the lower minimum infectious rate. To illustrate the implications of fractional and fractal dimensions with varying interest rate values through simulations with Newton's polynomial method under the Mittag-Lefller kernel. Additionally, a comparative analysis of results is also derived by employing power and exponential decay kernels at various fractional orders.

摘要

在这项工作中,我们通过具有两个分形和分数阶的分形分数算子,利用米塔格 - 莱夫勒型核来求解分数微分方程组。使用具有非奇异和非局部衰退记忆的分形分数导数概念,研究了具有单一衣原体源的六室模型。衣原体系统的分形分数模型可以通过利用非递减且紧致映射的特性来求解。考虑到时间尺度概念下的有界性、唯一性以及平衡点处的正解,并结合勒雷 - 绍德结果,对具有利普希茨准则和线性增长的建议模型进行了定性和定量研究。我们研究了传染病模型的局部和全局稳定性框架以及对李雅普诺夫函数性质的洞察。混沌控制将采用线性响应调节方法来使系统在平衡点之后达到稳定。这将考虑具有可控设计的分数阶框架,其中解在可行域内有界,并且在较低的最小感染率下有更大影响。通过在米塔格 - 莱夫勒核下使用牛顿多项式方法进行模拟,来说明分数维和分形维随利率值变化的影响。此外,还通过在不同分数阶下采用幂和指数衰减核来进行结果的比较分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8bf/11522554/8b2bd4cdd849/41598_2024_77567_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验