Suppr超能文献

利用生态录音的吸烟状况数字语音生物标志物:Colive Voice研究结果

Digital Vocal Biomarker of Smoking Status Using Ecological Audio Recordings: Results from the Colive Voice Study.

作者信息

Ayadi Hanin, Elbéji Abir, Despotovic Vladimir, Fagherazzi Guy

机构信息

Deep Digital Phenotyping Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg.

Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.

出版信息

Digit Biomark. 2024 Aug 28;8(1):159-170. doi: 10.1159/000540327. eCollection 2024 Jan-Dec.

Abstract

INTRODUCTION

The complex health, social, and economic consequences of tobacco smoking underscore the importance of incorporating reliable and scalable data collection on smoking status and habits into research across various disciplines. Given that smoking impacts voice production, we aimed to develop a gender and language-specific vocal biomarker of smoking status.

METHODS

Leveraging data from the Colive Voice study, we used statistical analysis methods to quantify the effects of smoking on voice characteristics. Various voice feature extraction methods combined with machine learning algorithms were then used to produce a gender and language-specific (English and French) digital vocal biomarker to differentiate smokers from never-smokers.

RESULTS

A total of 1,332‬ participants were included after propensity score matching (mean age = 43.6 [13.65], 64.41% are female, 56.68% are English speakers, 50% are smokers and 50% are never-smokers). We observed differences in voice features distribution: for women, the fundamental frequency F0, the formants F1, F2, and F3 frequencies and the harmonics-to-noise ratio were lower in smokers compared to never-smokers ( < 0.05) while for men no significant disparities were noted between the two groups. The accuracy and AUC of smoking status prediction reached 0.71 and 0.76, respectively, for the female participants, and 0.65 and 0.68, respectively, for the male participants.

CONCLUSION

We have shown that voice features are impacted by smoking. We have developed a novel digital vocal biomarker that can be used in clinical and epidemiological research to assess smoking status in a rapid, scalable, and accurate manner using ecological audio recordings.

摘要

引言

吸烟对健康、社会和经济造成的复杂影响凸显了将关于吸烟状况和习惯的可靠且可扩展的数据收集纳入各学科研究的重要性。鉴于吸烟会影响语音产生,我们旨在开发一种针对性别和语言的吸烟状况语音生物标志物。

方法

利用来自Colive Voice研究的数据,我们使用统计分析方法来量化吸烟对语音特征的影响。然后,将各种语音特征提取方法与机器学习算法相结合,以生成一种针对性别和语言(英语和法语)的数字语音生物标志物,用于区分吸烟者和从不吸烟者。

结果

倾向得分匹配后共纳入1332名参与者(平均年龄 = 43.6 [13.65],64.41%为女性,56.68%说英语,50%为吸烟者,50%为从不吸烟者)。我们观察到语音特征分布存在差异:对于女性,吸烟者的基频F0、共振峰F1、F2和F3频率以及谐波噪声比均低于从不吸烟者(<0.05),而对于男性,两组之间未发现显著差异。女性参与者吸烟状况预测的准确率和AUC分别达到0.71和0.76,男性参与者分别为0.65和0.68。

结论

我们已经表明语音特征会受到吸烟的影响。我们开发了一种新型数字语音生物标志物,可用于临床和流行病学研究,通过生态音频记录以快速、可扩展且准确的方式评估吸烟状况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56d/11521430/a1ad28b34686/dib-2024-0008-0001-540327_F01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验