Suppr超能文献

MED-ChatGPT助手:用于病例挖掘和辅助治疗的ChatGPT医学助手。

MED-ChatGPT CoPilot: a ChatGPT medical assistant for case mining and adjunctive therapy.

作者信息

Liu Wei, Kan Hongxing, Jiang Yanfei, Geng Yingbao, Nie Yiqi, Yang Mingguang

机构信息

School of Medical Information Engineering, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China.

Anhui Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei, Anhui, China.

出版信息

Front Med (Lausanne). 2024 Oct 16;11:1460553. doi: 10.3389/fmed.2024.1460553. eCollection 2024.

Abstract

BACKGROUND

The large-scale language model, GPT-4-1106-preview, supports text of up to 128 k characters, which has enhanced the capability of processing vast quantities of text. This model can perform efficient and accurate text data mining without the need for retraining, aided by prompt engineering.

METHOD

The research approach includes prompt engineering and text vectorization processing. In this study, prompt engineering is applied to assist ChatGPT in text mining. Subsequently, the mined results are vectorized and incorporated into a local knowledge base. After cleansing 306 medical papers, data extraction was performed using ChatGPT. Following a validation and filtering process, 241 medical case data entries were obtained, leading to the construction of a local medical knowledge base. Additionally, drawing upon the Langchain framework and utilizing the local knowledge base in conjunction with ChatGPT, we successfully developed a fast and reliable chatbot. This chatbot is capable of providing recommended diagnostic and treatment information for various diseases.

RESULTS

The performance of the designed ChatGPT model, which was enhanced by data from the local knowledge base, exceeded that of the original model by 7.90% on a set of medical questions.

CONCLUSION

ChatGPT, assisted by prompt engineering, demonstrates effective data mining capabilities for large-scale medical texts. In the future, we plan to incorporate a richer array of medical case data, expand the scale of the knowledge base, and enhance ChatGPT's performance in the medical field.

摘要

背景

大规模语言模型GPT-4-1106-preview支持处理长达128k字符的文本,这增强了处理大量文本的能力。该模型借助提示工程,无需重新训练就能高效准确地进行文本数据挖掘。

方法

研究方法包括提示工程和文本向量化处理。在本研究中,应用提示工程协助ChatGPT进行文本挖掘。随后,将挖掘结果向量化并纳入本地知识库。在清理306篇医学论文后,使用ChatGPT进行数据提取。经过验证和筛选过程,获得了241条医学病例数据条目,从而构建了本地医学知识库。此外,借鉴Langchain框架并结合本地知识库与ChatGPT,我们成功开发了一个快速可靠的聊天机器人。这个聊天机器人能够为各种疾病提供推荐的诊断和治疗信息。

结果

由本地知识库数据增强的设计ChatGPT模型在一组医学问题上的表现比原始模型高出7.90%。

结论

在提示工程的协助下,ChatGPT对大规模医学文本展示出有效的数据挖掘能力。未来,我们计划纳入更丰富的医学病例数据,扩大知识库规模,并提高ChatGPT在医学领域的表现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbf4/11521861/409971fb234d/fmed-11-1460553-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验