Suppr超能文献

基于细胞表面蛋白展示的具有可调机械性能的黏附性细菌膜

Cohesive Living Bacterial Films with Tunable Mechanical Properties from Cell Surface Protein Display.

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

出版信息

ACS Synth Biol. 2024 Nov 15;13(11):3686-3697. doi: 10.1021/acssynbio.4c00528. Epub 2024 Nov 1.

Abstract

Engineered living materials (ELMs) constitute a novel class of functional materials that contain living organisms. The mechanical properties of many such systems are dominated by the polymeric matrices used to encapsulate the cellular components of the material, making it hard to tune the mechanical behavior through genetic manipulation. To address this issue, we have developed living materials in which mechanical properties are controlled by the cell-surface display of engineered proteins. Here, we show that engineered cells outfitted with surface-displayed elastin-like proteins (ELPs, designated E6) grow into soft, cohesive bacterial films with biaxial moduli around 14 kPa. When subjected to bulge-testing, such films yielded at strains of approximately 10%. Introduction of a single cysteine residue near the exposed N-terminus of the ELP (to afford a protein designated CE6) increases the film modulus 3-fold to 44 kPa and eliminates the yielding behavior. When subjected to oscillatory stress, films prepared from strains bearing CE6 exhibit modest hysteresis and full strain recovery; in E6 films much more significant hysteresis and substantial plastic deformation are observed. CE6 films heal autonomously after damage, with the biaxial modulus fully restored after a few hours. This work establishes an approach to living materials with genetically programmable mechanical properties and a capacity for self-healing. Such materials may find application in biomanufacturing, biosensing, and bioremediation.

摘要

工程化活体材料(ELM)是一类新型的功能材料,包含有活体生物。许多这样的系统的机械性能主要由用于封装材料细胞成分的聚合基质决定,因此很难通过遗传操作来调节机械性能。为了解决这个问题,我们开发了一种活体材料,其机械性能由细胞表面展示的工程蛋白来控制。在这里,我们展示了经过工程改造的细胞,其表面展示有弹性蛋白样蛋白(ELP,命名为 E6),形成具有约 14 kPa 的双轴模量的柔软、有凝聚力的细菌膜。当进行凸起测试时,这种膜在大约 10%的应变下发生屈服。在 ELP 的暴露 N 端附近引入一个单一的半胱氨酸残基(赋予一个名为 CE6 的蛋白),可以将膜的模量增加 3 倍至 44 kPa,并消除屈服行为。当受到振荡应力时,CE6 应变体制备的膜表现出适度的滞后和完全的应变恢复;而在 E6 膜中观察到的滞后现象更为显著,塑性变形也更大。CE6 膜在受损后能自动愈合,几个小时后双轴模量完全恢复。这项工作建立了一种具有遗传可编程机械性能和自修复能力的活体材料的方法。这种材料可能在生物制造、生物传感和生物修复方面有应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aebd/11574920/f2eb8b267ff1/sb4c00528_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验