He Zhanfei, Gao Jingxun, Li Qunqun, Wei Zhen, Zhang Daoyong, Pan Xiangliang
Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
Water Res. 2025 Jan 1;268(Pt B):122705. doi: 10.1016/j.watres.2024.122705. Epub 2024 Oct 28.
Microbial manganese (Mn) oxidation plays a crucial role in shaping the fate of various elements, including arsenic (As). However, this process faces challenges in wastewater environments due to its inherent inefficiency and instability. In our initial research, a serendipitous discovery occurred: the addition of citrate to Fe(II)-containing wastewater stimulated the oxidation of Mn(II) by aerobic granular sludge (AGS). Subsequent experiments in four sequencing batch reactors (SBRs) over a 67-day period confirmed this stimulatory effect. The presence of Fe(II)-citrate led to a remarkable twofold increase in the oxidation of Mn(II) and As(III). The removal efficiency improved from 21±4 % to 87±7 % for Mn(II) and from 77.1 ± 1.8 % to 93.6 ± 0.2 % for As(III). The verification experiments demonstrated that the simultaneous addition of manganese-oxidizing bacteria (MnOB) and Fe(II)-citrate is an effective strategy for enhancing the oxidation and removal of Mn(II) and As(III) by AGS. Through a combination of genomic analysis, cell-free filtrate incubation, and bacterial batch cultivations (including monitoring the time-course changes of 17 substances and 2 free radicals), we elucidated a novel Mn(II) oxidation pathway in Pseudomonas, along with its stimulation method and mechanism. First, bacteria rapidly degrade citrate possibly via the citrate-Mg:H symporter (CitMHS) and the tricarboxylic acid (TCA) cycle, resulting in the formation of colloidal Fe(II), colloidal Fe(III), and biogenic iron (hydr)oxides (FeOx). Then, colloidal Fe(II) and colloidal Fe(III) stimulated extracellular proteins to produce superoxide radicals (·O). These radicals were responsible for oxidizing Mn(II) into Mn(III), ultimately forming biogenic manganese oxides (MnOx). Finally, MnOx effectively oxidized As(III) to the less toxic As(V). This innovative approach for bacterial Mn(II) oxidation holds promise for treating Mn(II) and As(III) in water and wastewater. Furthermore, the mechanism by which colloidal iron stimulates extracellular proteins to produce ·O, thereby facilitating Mn(II) oxidation, may widely occur across various engineering and natural ecosystems.
微生物锰(Mn)氧化在决定包括砷(As)在内的各种元素的归宿方面起着关键作用。然而,由于其固有的低效性和不稳定性,这一过程在废水环境中面临挑战。在我们最初的研究中,有一个意外发现:向含铁(II)的废水中添加柠檬酸盐会刺激好氧颗粒污泥(AGS)对锰(II)的氧化。随后在四个序批式反应器(SBR)中进行的为期67天的实验证实了这种刺激作用。柠檬酸铁(II)的存在使锰(II)和砷(III)的氧化显著增加了两倍。锰(II)的去除效率从21±4%提高到87±7%,砷(III)的去除效率从77.1±1.8%提高到93.6±0.2%。验证实验表明,同时添加锰氧化细菌(MnOB)和柠檬酸铁(II)是提高AGS对锰(II)和砷(III)氧化及去除效果的有效策略。通过基因组分析、无细胞滤液培养和细菌分批培养(包括监测17种物质和2种自由基的时间进程变化)相结合的方法,我们阐明了假单胞菌中一种新的锰(II)氧化途径及其刺激方法和机制。首先,细菌可能通过柠檬酸 - 镁:氢同向转运体(CitMHS)和三羧酸(TCA)循环迅速降解柠檬酸盐,导致形成胶体铁(II)、胶体铁(III)和生物源铁(氢)氧化物(FeOx)。然后,胶体铁(II)和胶体铁(III)刺激细胞外蛋白质产生超氧自由基(·O)。这些自由基负责将锰(II)氧化成锰(III),最终形成生物源锰氧化物(MnOx)。最后,MnOx有效地将砷(III)氧化为毒性较小的砷(V)。这种创新的细菌锰(II)氧化方法有望用于处理水和废水中的锰(II)和砷(III)。此外,胶体铁刺激细胞外蛋白质产生·O从而促进锰(II)氧化的机制可能在各种工程和自然生态系统中广泛存在。