Salehi Amirreza, Khedmati Majid
Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran.
Heliyon. 2024 Oct 18;10(20):e39609. doi: 10.1016/j.heliyon.2024.e39609. eCollection 2024 Oct 30.
Congenital heart disease (CHD) remains a significant global health concern, affecting approximately 1 % of newborns worldwide. While its accurate causes often remain elusive, a combination of genetic and environmental factors is implicated. In this cross-sectional study, we propose a comprehensive prediction framework leveraging Machine Learning (ML) and Multi-Attribute Decision Making (MADM) techniques to enhance CHD diagnostics and forecasting. Our framework integrates supervised and unsupervised learning methodologies to remove data noise and address imbalanced datasets effectively. Through the utilization of imbalance ensemble methods and clustering algorithms such as K-means, we enhance predictive accuracy, particularly in non-clinical datasets where imbalances are prevalent. Our results demonstrate an improvement of 8 % in recall compared to existing literature, showcasing the efficacy of our approach. Moreover, our framework identifies clusters of patients at the highest risk using MADM techniques, providing insights into susceptibility to CHD. Fuzzy clustering techniques further assess the degree of risk for individuals within each cluster, enabling personalized risk evaluation. Importantly, our analysis reveals that unhealthy lifestyle factors, annual per capita income, nutrition, and folic acid supplementation emerge as crucial predictors of CHD occurrences. Additionally, environmental risk factors and maternal illnesses significantly contribute to the predictive model. These findings underscore the multifactorial nature of CHD development, emphasizing the importance of considering socioeconomic and lifestyle factors alongside medical variables in CHD risk assessment and prevention strategies. Our proposed framework offers a promising avenue for early identification and intervention, potentially mitigating the burden of CHD on affected individuals and healthcare systems globally.
先天性心脏病(CHD)仍然是一个重大的全球健康问题,影响着全球约1%的新生儿。虽然其确切病因往往难以捉摸,但遗传和环境因素的综合作用被认为与之相关。在这项横断面研究中,我们提出了一个综合预测框架,利用机器学习(ML)和多属性决策(MADM)技术来加强CHD的诊断和预测。我们的框架整合了监督学习和无监督学习方法,以消除数据噪声并有效处理不平衡数据集。通过使用不平衡集成方法和聚类算法(如K均值算法),我们提高了预测准确性,特别是在不平衡现象普遍存在的非临床数据集中。我们的结果表明,与现有文献相比,召回率提高了8%,展示了我们方法的有效性。此外,我们的框架使用MADM技术识别出风险最高的患者群体,深入了解CHD的易感性。模糊聚类技术进一步评估每个群体中个体的风险程度,实现个性化风险评估。重要的是,我们的分析表明,不健康的生活方式因素、人均年收入、营养状况和叶酸补充剂是CHD发病的关键预测因素。此外,环境风险因素和母亲疾病对预测模型有显著贡献。这些发现强调了CHD发展的多因素性质,强调在CHD风险评估和预防策略中,除了医学变量外,考虑社会经济和生活方式因素的重要性。我们提出的框架为早期识别和干预提供了一条有前景的途径,有可能减轻CHD对全球受影响个体和医疗系统的负担。