Tang Qi, Veysset David, Assadi Hamid, Ichikawa Yuji, Hassani Mostafa
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA.
Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, 94305, USA.
Nat Commun. 2024 Nov 7;15(1):9630. doi: 10.1038/s41467-024-53990-z.
Solid-state bonding can form when metallic microparticles impact metallic substrates at supersonic velocities. While the conditions necessary for impact-induced metallic bonding are relatively well understood, the properties emerging at the bonded interfaces remain elusive. Here, we use in situ microparticle impact experiments followed by site-specific micromechanical measurements to study the interfacial strength across bonded interfaces. We reveal a gradient of bond strength starting with a weak bonding near the impact center, followed by a rapid twofold rise to a peak strength significantly higher than the yield strength of the bulk material, and eventually, a plateau covering a large portion of the interface towards the periphery. We show that the form of the native oxide at the bonded interface-whether layers, particles, or debris-dictates the level of bond strength. We formulate a predictive framework for impact-induced bond strength based on the evolution of the contact pressure and surface exposure.
当金属微粒以超音速撞击金属基底时,固态键合就会形成。虽然人们对撞击诱导金属键合所需的条件相对了解得比较清楚,但键合界面处出现的特性仍然难以捉摸。在此,我们通过原位微粒撞击实验,随后进行特定位置的微机械测量,来研究键合界面的界面强度。我们揭示了键合强度的梯度变化,从撞击中心附近的弱键合开始,接着迅速翻倍上升至峰值强度,该峰值强度显著高于块状材料的屈服强度,最终,在朝向周边的界面大部分区域出现一个平稳阶段。我们表明,键合界面处原生氧化物的形态——无论是层状、颗粒状还是碎片状——决定了键合强度的水平。我们基于接触压力和表面暴露的演变,制定了一个用于预测撞击诱导键合强度的框架。