Suppr超能文献

DeSide:一种用于肿瘤微环境细胞去卷积的统一深度学习方法。

DeSide: A unified deep learning approach for cellular deconvolution of tumor microenvironment.

机构信息

Department of Physics, Hong Kong Baptist University, Hong Kong, China.

Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

出版信息

Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2407096121. doi: 10.1073/pnas.2407096121. Epub 2024 Nov 8.

Abstract

Cellular deconvolution via bulk RNA sequencing (RNA-seq) presents a cost-effective and efficient alternative to experimental methods such as flow cytometry and single-cell RNA-seq (scRNA-seq) for analyzing the complex cellular composition of tumor microenvironments. Despite challenges due to heterogeneity within and among tumors, our innovative deep learning-based approach, DeSide, shows exceptional accuracy in estimating the proportions of 16 distinct cell types and subtypes within solid tumors. DeSide integrates biological pathways and assesses noncancerous cell types first, effectively sidestepping the issue of highly variable gene expression profiles (GEPs) associated with cancer cells. By leveraging scRNA-seq data from six cancer types and 185 cancer cell lines across 22 cancer types as references, our method introduces distinctive sampling and filtering techniques to generate a high-quality training set that closely replicates real tumor GEPs, based on The Cancer Genome Atlas (TCGA) bulk RNA-seq data. With this model and high-quality training set, DeSide outperforms existing methods in estimating tumor purity and the proportions of noncancerous cells within solid tumors. Our model precisely predicts cellular compositions across 19 cancer types from TCGA and proves its effectiveness with multiple additional external datasets. Crucially, DeSide enables the identification and analysis of combinatorial cell type pairs, facilitating the stratification of cancer patients into prognostically significant groups. This approach not only provides deeper insights into the dynamics of tumor biology but also highlights potential therapeutic targets by underscoring the importance of specific cell type or subtype interactions.

摘要

通过 bulk RNA 测序(RNA-seq)进行细胞去卷积是一种具有成本效益和高效率的替代方法,可用于分析肿瘤微环境的复杂细胞组成,而无需使用流式细胞术和单细胞 RNA-seq(scRNA-seq)等实验方法。尽管由于肿瘤内和肿瘤间的异质性带来了挑战,但我们的创新深度学习方法 DeSide 在估计实体瘤中 16 种不同细胞类型和亚型的比例方面表现出了极高的准确性。DeSide 整合了生物学途径,并首先评估非癌细胞类型,有效地避免了与癌细胞相关的高度可变基因表达谱(GEP)问题。通过利用来自六个癌症类型和 22 个癌症类型的 185 个癌细胞系的 scRNA-seq 数据作为参考,我们的方法引入了独特的采样和过滤技术,生成了一个高质量的训练集,该训练集基于 The Cancer Genome Atlas(TCGA)bulk RNA-seq 数据,紧密复制真实肿瘤 GEP。使用这个模型和高质量的训练集,DeSide 在估计肿瘤纯度和实体瘤中非癌细胞的比例方面优于现有的方法。我们的模型在 TCGA 上的 19 种癌症类型上精确地预测了细胞组成,并通过多个额外的外部数据集证明了其有效性。至关重要的是,DeSide 能够识别和分析组合细胞类型对,从而将癌症患者分为具有预后意义的组。这种方法不仅提供了对肿瘤生物学动态的更深入了解,还通过强调特定细胞类型或亚型相互作用的重要性,突出了潜在的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3150/11573681/2f5d80b933e5/pnas.2407096121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验