Suppr超能文献

流感和新冠疫苗有效性分析中的偏倚评估与缓解——IVY 网络,2022年9月1日至2023年3月30日

Assessment and mitigation of bias in influenza and COVID-19 vaccine effectiveness analyses - IVY Network, September 1, 2022-March 30, 2023.

作者信息

Lewis Nathaniel M, Harker Elizabeth J, Leis Aleda, Zhu Yuwei, Talbot H Keipp, Grijalva Carlos G, Halasa Natasha, Chappell James D, Johnson Cassandra A, Rice Todd W, Casey Jonathan D, Lauring Adam S, Gaglani Manjusha, Ghamande Shekhar, Columbus Cristie, Steingrub Jay S, Shapiro Nathan I, Duggal Abhijit, Felzer Jamie, Prekker Matthew E, Peltan Ithan D, Brown Samuel M, Hager David N, Gong Michelle N, Mohamed Amira, Exline Matthew C, Khan Akram, Wilson Jennifer G, Mosier Jarrod, Qadir Nida, Chang Steven Y, Ginde Adit A, Mohr Nicholas M, Mallow Christopher, Harris Estelle S, Johnson Nicholas J, Srinivasan Vasisht, Gibbs Kevin W, Kwon Jennie H, Vaughn Ivana A, Ramesh Mayur, Safdar Basmah, DeCuir Jennifer, Surie Diya, Dawood Fatimah S, Ellington Sascha, Self Wesley H, Martin Emily T

机构信息

Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, United States.

Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, United States.

出版信息

Vaccine. 2025 Jan 1;43(Pt 2):126492. doi: 10.1016/j.vaccine.2024.126492. Epub 2024 Nov 7.

Abstract

BACKGROUND

In test-negative studies of vaccine effectiveness (VE), including patients with co-circulating, vaccine-preventable, respiratory pathogens in the control group for the pathogen of interest can introduce a downward bias on VE estimates.

METHODS

A multicenter sentinel surveillance network in the US prospectively enrolled adults hospitalized with acute respiratory illness from September 1, 2022-March 31, 2023. We evaluated bias in estimates of VE against influenza-associated and COVID-19-associated hospitalization based on: inclusion vs exclusion of patients with a co-circulating virus among VE controls; observance of VE against the co-circulating virus (rather than the virus of interest), unadjusted and adjusted for vaccination against the virus of interest; and observance of influenza or COVID-19 against a sham outcome of respiratory syncytial virus (RSV).

RESULTS

Overall VE against influenza-associated hospitalizations was 6 percentage points lower when patients with COVID-19 were included in the control group, and overall VE against COVID-19-associated hospitalizations was 2 percentage points lower when patients with influenza were included in the control group. Analyses of VE against the co-circulating virus and against the sham outcome of RSV showed that downward bias was largely attributable the correlation of vaccination status across pathogens, but also potentially attributable to other sources of residual confounding in VE models.

CONCLUSION

Excluding cases of confounding respiratory pathogens from the control group in VE analysis for a pathogen of interest can reduce downward bias. This real-world analysis demonstrates that such exclusion is a helpful bias mitigation strategy, especially for measuring influenza VE, which included a high proportion of COVID-19 cases among controls.

摘要

背景

在疫苗效力(VE)的阴性对照研究中,在针对目标病原体的对照组中纳入同时流行的、疫苗可预防的呼吸道病原体患者,可能会使VE估计值出现向下偏差。

方法

美国一个多中心哨点监测网络前瞻性纳入了2022年9月1日至2023年3月31日因急性呼吸道疾病住院的成年人。我们基于以下因素评估了针对流感相关和新冠相关住院的VE估计值中的偏差:VE对照组中是否纳入同时感染病毒的患者;针对同时感染病毒(而非目标病毒)的VE观察情况,未调整以及针对目标病毒疫苗接种情况进行调整后的观察情况;以及针对呼吸道合胞病毒(RSV)假结局的流感或新冠观察情况。

结果

当对照组纳入新冠患者时,针对流感相关住院的总体VE降低了6个百分点;当对照组纳入流感患者时,针对新冠相关住院的总体VE降低了2个百分点。针对同时感染病毒和RSV假结局的VE分析表明,向下偏差很大程度上归因于不同病原体之间疫苗接种状态的相关性,但也可能归因于VE模型中其他残留混杂因素来源。

结论

在针对目标病原体的VE分析中,从对照组排除混杂呼吸道病原体病例可减少向下偏差。这项真实世界分析表明,这种排除是一种有用的偏差减轻策略,特别是对于测量流感VE而言,其对照组中包含高比例的新冠病例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验