Suppr超能文献

用于预测房间隔缺损患者部分肺静脉异常连接的可解释深度学习模型。

An explainable deep learning model to predict partial anomalous pulmonary venous connection for patients with atrial septal defect.

机构信息

Heart Center, Women and Children's Hospital, Qingdao University, 6 Tongfu Road, Qingdao, 266034, China.

出版信息

BMC Pediatr. 2024 Nov 8;24(1):716. doi: 10.1186/s12887-024-05193-0.

Abstract

BACKGROUND

Patients with partial anomalous pulmonary venous connection (PAPVC) usually present asymptomatic and accompanied by intricate anatomical types, which results in missed diagnosis from atrial septal defect (ASD). The present study aimed to explore the predictive variables of PAPVC from patients with ASD and constructed an explainable prediction model based on deep learning.

METHODS

The retrospective study included 834 inpatients with ASD in Women and Children's Hospital, Qingdao University from January 2018 to January 2023. They were separated into two groups based on the presence of PAPVC. Propensity score matching and SMOTE were used to balance the baseline data between groups. The differential variables between the two groups were determined by univariate logistic regression. The patients were randomly divided into the training set and the validation set in a ratio of 8:2. Support vector machines (SVM), Random forest, Decision tree, XGBoost, and LightGBM were used to build models by differential variables. The classification performance of models was compared. Split, gain and SHAP were used to measure the importance of differential variables and improve the interpretability of the model. Moreover, a portion of the patients was included in the validation set to test the performance of the selected models.

RESULTS

Three hundred twenty-eight patients with ASD and patients with 82 PAPVC were included in the training set and the validation set, respectively. The selection of 10 differential variables was based on univariate logistic regression, including right atrial diameter (longitudinal axis and transverse axis), right ventricular diameter, left atrial diameter, left ventricular end-diastolic diameter, left ventricular end-systolic diameter, P-wave voltage, P-wave interval PR interval, and QRS-wave voltage. In the classification model established based on differential variables, the LightGBM model achieved the highest performance on the validation set (AUC = 0.93). Based on variables importance analysis, the LightGBM-Clinic model was retrained by P-wave voltage, P-wave interval, PR interval, QRS wave interval, and right ventricular diameter, and performed excellently (AUC = 0.90). The AUC of the LightGBM-Clinic model was 0.87 in the test set.

CONCLUSION

In this study, the LightGBM model performs excellently in determining whether patients with ASD are accompanied by PAPVC. ECG parameters such as P-wave voltage were important to predictive value and enhance the explainability of the model.

摘要

背景

部分肺静脉异常连接(PAPVC)患者通常无症状,且伴有复杂的解剖类型,这导致其易被漏诊为房间隔缺损(ASD)。本研究旨在探讨基于深度学习构建的 ASD 患者 PAPVC 的预测变量,并构建一个可解释的预测模型。

方法

回顾性研究纳入 2018 年 1 月至 2023 年 1 月期间在青岛大学妇女儿童医院住院的 834 例 ASD 患者,根据是否存在 PAPVC 将其分为两组。采用倾向性评分匹配和 SMOTE 平衡组间基线数据。采用单因素逻辑回归确定两组间的差异变量。将患者随机分为训练集和验证集,比例为 8:2。采用支持向量机(SVM)、随机森林、决策树、XGBoost 和 LightGBM 基于差异变量构建模型,并比较模型的分类性能。采用 Split、Gain 和 SHAP 衡量差异变量的重要性,提高模型的可解释性。此外,一部分患者纳入验证集以检验所选模型的性能。

结果

将 328 例 ASD 患者和 82 例 PAPVC 患者分别纳入训练集和验证集。基于单因素逻辑回归选择 10 个差异变量,包括右心房直径(长轴和短轴)、右心室直径、左心房直径、左心室舒张末期直径、左心室收缩末期直径、P 波电压、P 波间期 PR 间期、QRS 波电压。在基于差异变量建立的分类模型中,LightGBM 模型在验证集上的性能最高(AUC=0.93)。基于变量重要性分析,由 P 波电压、P 波间期、PR 间期、QRS 波间期和右心室直径重新训练的 LightGBM-Clinic 模型表现出色(AUC=0.90)。LightGBM-Clinic 模型在测试集中的 AUC 为 0.87。

结论

本研究中,LightGBM 模型在确定 ASD 患者是否伴有 PAPVC 方面表现出色。P 波电压等 ECG 参数对预测值很重要,增强了模型的可解释性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2184/11546076/c1bab168c1a5/12887_2024_5193_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验