Key Laboratory for Humid Subtropical Ecogeographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350117, China.
Institute of Geography, Fujian Normal University, Fuzhou, 350117, China.
Sci Rep. 2024 Nov 9;14(1):27331. doi: 10.1038/s41598-024-78946-7.
Magnetotactic bacteria (MTB) combine passive alignment with the Earth magnetic field with a chemotactic response (magneto-chemotaxis) to reach their optimal living depth in chemically stratified environments. Current magneto-aerotaxis models fail to explain the occurrence of MTB far below the oxic-anoxic interface and the coexistence of MTB cells with opposite magnetotactic polarity at depths that are unrelated with the redox gradient. Here we propose a modified model of polar magnetotaxis which explains these observations, as well as the distinct concentration profiles and magnetotactic advantages of two types of MTB inhabiting a freshwater sediment: a group of unidentified cocci (MC), and a giant rod-shaped bacterium (MB) apparently identical to M. bavaricum (MB). This model assumed that magnetotactic polarity is set by a threshold mechanism in counter gradients of oxygen and a second group of repellents, with, in case of MB, includes H ions. MTB possessing this type of polar magnetotaxis can shuttle between two limit depths across the redox gradient (redox taxis), as previously postulated for M. bavaricum and other members of the Nitrospirota group. The magnetotaxis of MB and MC is predominantly dipolar whenever the presence of a magnetic field ensures a magnetotactic advantage. In addition, MB can overcome unfavorable magnetic field configurations through a temporal sensing mechanism. The availability of threshold and temporal sensing mechanisms of different substances can generate a rich variety of responses by different types of MTB, enabling them to exploit multiple ecological niches.
趋磁细菌(MTB)将被动与地球磁场对齐与化学趋性反应(磁化学趋性)相结合,以到达其在化学分层环境中的最佳生存深度。当前的磁气趋性模型无法解释 MTB 在氧化还原界面以下很远的地方出现的情况,以及在与氧化还原梯度无关的深度处存在具有相反磁趋性极性的 MTB 细胞共存的情况。在这里,我们提出了一种改进的极性磁趋性模型,该模型解释了这些观察结果,以及两种类型的 MTB 在淡水沉积物中栖息的明显不同的浓度分布和磁趋性优势:一群未鉴定的球菌(MC)和一种巨大的杆状细菌(MB)显然与 M. bavaricum(MB)相同。该模型假设磁趋性极性由氧气和第二组排斥剂的梯度中的阈值机制设定,在 MB 的情况下,这包括 H 离子。具有这种极性磁趋性的 MTB 可以在氧化还原梯度(氧化还原趋性)之间的两个极限深度之间穿梭,就像以前推测的 M. bavaricum 和其他 Nitrospirota 组的成员一样。只要磁场存在保证了磁趋性优势,MB 和 MC 的磁趋性主要是偶极的。此外,MB 可以通过时间感应机制克服不利的磁场配置。不同物质的阈值和时间感应机制的可用性可以产生不同类型的 MTB 的各种丰富的响应,使它们能够利用多个生态位。