Schiml Valerie C, Walter Juline M, Hagen Live H, Varnai Aniko, Bergaust Linda L, De Leon Arturo Vera Ponce, Elsgaard Lars, Bakken Lars R, Arntzen Magnus Ø
Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway.
Appl Environ Microbiol. 2024 Dec 18;90(12):e0174224. doi: 10.1128/aem.01742-24. Epub 2024 Nov 11.
Freshwater ecosystems can be largely affected by neighboring agriculture fields where potential fertilizer nitrate run-off may leach into surrounding water bodies. To counteract this eutrophic driver, farmers in certain areas are utilizing denitrifying woodchip bioreactors (WBRs) in which a consortium of microorganisms convert the nitrate into nitrogen gases in anoxia, fueled by the degradation of lignocellulose. Polysaccharide-degrading strategies have been well described for various aerobic and anaerobic systems, including the use of carbohydrate-active enzymes, utilization of lytic polysaccharide monooxygenases (LPMOs) and other redox enzymes, as well as the use of cellulosomes and polysaccharide utilization loci (PULs). However, for denitrifying microorganisms, the lignocellulose-degrading strategies remain largely unknown. Here, we have applied a combination of enrichment techniques, gas measurements, multi-omics approaches, and amplicon sequencing of fungal ITS and procaryotic 16S rRNA genes to identify microbial drivers for lignocellulose transformation in woodchip bioreactors and their active enzymes. Our findings highlight a microbial community enriched for (ligno)cellulose-degrading denitrifiers with key players from the taxa , , and UBA5070 (). A wide substrate specificity is observed among the many expressed carbohydrate-active enzymes (CAZymes) including PULs from Bacteroidetes. This suggests a broad degradation of lignocellulose subfractions, including enzymes with auxiliary activities whose functionality is still puzzling under strict anaerobic conditions.
Freshwater ecosystems face significant threats from agricultural runoff, which can lead to eutrophication and subsequent degradation of water quality. One solution to mitigate this issue is using denitrifying woodchip bioreactors (WBRs), where microorganisms convert nitrate into nitrogen gases utilizing lignocellulose as a carbon source. Despite the well-documented polysaccharide-degrading strategies in various systems, the mechanisms employed by denitrifying microorganisms in WBRs remain largely unexplored. This study fills a critical knowledge gap by revealing the degrading strategies of denitrifying microbial communities in WBRs. By integrating state-of-the-art techniques, we have identified key microbial drivers including , , , and UBA5070 () playing significant roles in lignocellulose transformation and showcasing a broad substrate specificity and complex metabolic capability. Our findings advance the understanding of microbial ecology in WBRs and by revealing the enzymatic activities, this research may inform efforts to improve water quality, protect aquatic ecosystems, and reduce greenhouse gas emissions from WBRs.
淡水生态系统可能会受到邻近农田的很大影响,在这些农田中,潜在的化肥硝酸盐径流可能会渗入周围水体。为了对抗这种富营养化驱动因素,某些地区的农民正在使用反硝化木屑生物反应器(WBRs),在其中,微生物群落利用木质纤维素的降解,在缺氧条件下将硝酸盐转化为氮气。多糖降解策略在各种需氧和厌氧系统中已有详细描述,包括使用碳水化合物活性酶、利用裂解多糖单加氧酶(LPMOs)和其他氧化还原酶,以及使用纤维小体和多糖利用位点(PULs)。然而,对于反硝化微生物来说,木质纤维素降解策略在很大程度上仍然未知。在这里,我们应用了富集技术、气体测量、多组学方法以及真菌ITS和原核生物16S rRNA基因的扩增子测序相结合的方法,来识别木屑生物反应器中木质纤维素转化的微生物驱动因素及其活性酶。我们的研究结果突出了一个富含(木质)纤维素降解反硝化菌的微生物群落,其中有来自 、 、 和UBA5070( )分类群的关键成员。在许多表达的碳水化合物活性酶(CAZymes)中观察到广泛的底物特异性,包括来自拟杆菌门的PULs。这表明木质纤维素亚组分有广泛的降解,包括在严格厌氧条件下功能仍令人困惑的具有辅助活性的酶。
淡水生态系统面临来自农业径流的重大威胁,这可能导致富营养化以及随后的水质退化。缓解这个问题的一个解决方案是使用反硝化木屑生物反应器(WBRs),在其中微生物利用木质纤维素作为碳源将硝酸盐转化为氮气。尽管在各种系统中多糖降解策略已有充分记录,但WBRs中反硝化微生物所采用的机制在很大程度上仍未被探索。这项研究通过揭示WBRs中反硝化微生物群落的降解策略填补了关键的知识空白。通过整合最先进的技术,我们已经确定了关键的微生物驱动因素,包括 、 、 和UBA5070( ),它们在木质纤维素转化中发挥着重要作用,并展示出广泛的底物特异性和复杂的代谢能力。我们的研究结果推进了对WBRs中微生物生态学的理解,并且通过揭示酶活性,这项研究可能为改善水质、保护水生生态系统以及减少WBRs中的温室气体排放的努力提供信息。