Sharma Anand, Liu Chen, Ozawa Misaki
Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
CNRS, LIPhy, Univ. Grenoble Alpes, 38000 Grenoble, France.
J Chem Phys. 2024 Nov 14;161(18). doi: 10.1063/5.0235084.
We numerically investigate the identification of relevant structural features that contribute to the dynamical heterogeneity in a model glass-forming liquid. By employing the recently proposed information imbalance technique, we select these features from a range of physically motivated descriptors. This selection process is performed in a supervised manner (using both dynamical and structural data) and an unsupervised manner (using only structural data). We then apply the selected features to predict future dynamics using a machine learning technique. One of the advantages of the information imbalance technique is that it does not assume any model a priori, i.e., it is a non-parametric method. Finally, we discuss the potential applications of this approach in identifying the dominant mechanisms governing the glassy slow dynamics.
我们通过数值方法研究了有助于模型玻璃形成液体动力学非均匀性的相关结构特征的识别。通过采用最近提出的信息不平衡技术,我们从一系列具有物理动机的描述符中选择这些特征。这种选择过程以监督方式(使用动力学和结构数据)和无监督方式(仅使用结构数据)进行。然后,我们使用机器学习技术应用所选特征来预测未来的动力学。信息不平衡技术的优点之一是它不预先假定任何模型,即它是一种非参数方法。最后,我们讨论了这种方法在识别控制玻璃态慢动力学的主导机制方面的潜在应用。