Suppr超能文献

通过扩散跳跃图神经网络进行异质环境下的节点分类

Node classification in the heterophilic regime via diffusion-jump GNNs.

作者信息

Begga Ahmed, Escolano Francisco, Lozano Miguel Ángel

机构信息

Department of Computer Science and Artificial Intelligence, Alicante, Spain.

Department of Computer Science and Artificial Intelligence, Alicante, Spain.

出版信息

Neural Netw. 2025 Jan;181:106830. doi: 10.1016/j.neunet.2024.106830. Epub 2024 Oct 26.

Abstract

In the ideal (homophilic) regime of vanilla GNNs, nodes belonging to the same community have the same label: most of the nodes are harmonic (their unknown labels result from averaging those of their neighbors given some labeled nodes). In other words, heterophily (when neighboring nodes have different labels) can be seen as a "loss of harmonicity". In this paper, we define "structural heterophily" in terms of the ratio between the harmonicity of the network (Laplacian Dirichlet energy) and the harmonicity of its homophilic version (the so-called "ground" energy). This new measure inspires a novel GNN model (Diffusion-Jump GNN) that bypasses structural heterophily by "jumping" through the network in order to relate distant homologs. However, instead of using hops as standard High-Order (HO) GNNs (MixHop) do, our jumps are rooted in a structural well-known metric: the diffusion distance. Computing the "diffusion matrix" (DM) is the core of this method. Our main contribution is that we learn both the diffusion distances and the "structural filters" derived from them. Since diffusion distances have a spectral interpretation, we learn orthogonal approximations of the Laplacian eigenvectors while the prediction loss is minimized. This leads to an interplay between a Dirichlet loss, which captures low-frequency content, and a prediction loss which refines that content leading to empirical eigenfunctions. Finally, our experimental results show that we are very competitive with the State-Of-the-Art (SOTA) both in homophilic and heterophilic datasets, even in large graphs.

摘要

在普通图神经网络(GNN)的理想(同配)模式下,属于同一社区的节点具有相同的标签:大多数节点是调和的(它们未知的标签是在给定一些带标签节点的情况下,通过对其邻居的标签进行平均得到的)。换句话说,异配性(当相邻节点具有不同标签时)可以被视为一种“调和性的损失”。在本文中,我们根据网络的调和性(拉普拉斯狄利克雷能量)与其同配版本的调和性(所谓的“基础”能量)之间的比率来定义“结构异配性”。这种新的度量方法启发了一种新颖的GNN模型(扩散跳跃GNN),该模型通过在网络中“跳跃”以关联远距离的同源节点,从而绕过结构异配性。然而,与标准的高阶(HO)GNN(MixHop)使用跳数不同,我们的跳跃基于一种结构上众所周知的度量:扩散距离。计算“扩散矩阵”(DM)是该方法的核心。我们的主要贡献在于,我们同时学习扩散距离以及从扩散距离导出的“结构滤波器”。由于扩散距离具有谱解释,我们在最小化预测损失的同时学习拉普拉斯特征向量的正交近似。这导致了捕获低频内容的狄利克雷损失与细化该内容以得到经验特征函数的预测损失之间的相互作用。最后,我们的实验结果表明,即使在大型图中,我们在同配和异配数据集上都与当前最优方法(SOTA)具有很强的竞争力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验