Suppr超能文献

用于患者教育的大语言模型:医学应用的范围综述

Large language models in patient education: a scoping review of applications in medicine.

作者信息

Aydin Serhat, Karabacak Mert, Vlachos Victoria, Margetis Konstantinos

机构信息

School of Medicine, Koç University, Istanbul, Türkiye.

Department of Neurosurgery, Mount Sinai Health System, New York, NY, United States.

出版信息

Front Med (Lausanne). 2024 Oct 29;11:1477898. doi: 10.3389/fmed.2024.1477898. eCollection 2024.

Abstract

INTRODUCTION

Large Language Models (LLMs) are sophisticated algorithms that analyze and generate vast amounts of textual data, mimicking human communication. Notable LLMs include GPT-4o by Open AI, Claude 3.5 Sonnet by Anthropic, and Gemini by Google. This scoping review aims to synthesize the current applications and potential uses of LLMs in patient education and engagement.

MATERIALS AND METHODS

Following the PRISMA-ScR checklist and methodologies by Arksey, O'Malley, and Levac, we conducted a scoping review. We searched PubMed in June 2024, using keywords and MeSH terms related to LLMs and patient education. Two authors conducted the initial screening, and discrepancies were resolved by consensus. We employed thematic analysis to address our primary research question.

RESULTS

The review identified 201 studies, predominantly from the United States (58.2%). Six themes emerged: generating patient education materials, interpreting medical information, providing lifestyle recommendations, supporting customized medication use, offering perioperative care instructions, and optimizing doctor-patient interaction. LLMs were found to provide accurate responses to patient queries, enhance existing educational materials, and translate medical information into patient-friendly language. However, challenges such as readability, accuracy, and potential biases were noted.

DISCUSSION

LLMs demonstrate significant potential in patient education and engagement by creating accessible educational materials, interpreting complex medical information, and enhancing communication between patients and healthcare providers. Nonetheless, issues related to the accuracy and readability of LLM-generated content, as well as ethical concerns, require further research and development. Future studies should focus on improving LLMs and ensuring content reliability while addressing ethical considerations.

摘要

引言

大语言模型(LLMs)是复杂的算法,可分析和生成大量文本数据,模仿人类交流。著名的大语言模型包括OpenAI的GPT - 4o、Anthropic的Claude 3.5 Sonnet以及谷歌的Gemini。本综述旨在综合大语言模型在患者教育和参与方面的当前应用及潜在用途。

材料与方法

遵循阿克斯西、奥马利和莱瓦克的PRISMA - ScR清单及方法,我们进行了一项综述。2024年6月,我们在PubMed上进行搜索,使用与大语言模型和患者教育相关的关键词及医学主题词。两位作者进行初步筛选,分歧通过协商解决。我们采用主题分析来解决主要研究问题。

结果

该综述共识别出201项研究,其中大部分来自美国(58.2%)。出现了六个主题:生成患者教育材料、解读医学信息、提供生活方式建议、支持个性化用药、提供围手术期护理指导以及优化医患互动。研究发现,大语言模型能够准确回答患者的问题,改进现有的教育材料,并将医学信息转化为患者易懂的语言。然而,也指出了诸如可读性、准确性和潜在偏差等挑战。

讨论

大语言模型通过创建易于获取的教育材料、解读复杂的医学信息以及加强患者与医疗服务提供者之间的沟通,在患者教育和参与方面展现出巨大潜力。尽管如此,与大语言模型生成内容的准确性和可读性相关的问题以及伦理问题,仍需要进一步的研究和开发。未来的研究应专注于改进大语言模型,确保内容可靠性,同时解决伦理考量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec96/11554522/80a842eb05a1/fmed-11-1477898-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验