Suppr超能文献

量子绝缘体中的中性电子激发。

Charge-neutral electronic excitations in quantum insulators.

机构信息

Department of Physics, Princeton University, Princeton, NJ, USA.

Department of Chemistry, Princeton University, Princeton, NJ, USA.

出版信息

Nature. 2024 Nov;635(8038):301-310. doi: 10.1038/s41586-024-08091-8. Epub 2024 Nov 13.

Abstract

Experiments on quantum materials have uncovered many interesting quantum phases ranging from superconductivity to a variety of topological quantum matter including the recently observed fractional quantum anomalous Hall insulators. The findings have come in parallel with the development of approaches to probe the rich excitations inherent in such systems. In contrast to observing electrically charged excitations, the detection of charge-neutral electronic excitations in condensed matter remains difficult, although they are essential to understanding a large class of strongly correlated phases. Low-energy neutral excitations are especially important in characterizing unconventional phases featuring electron fractionalization, such as quantum spin liquids, spin ices and insulators with neutral Fermi surfaces. In this Perspective, we discuss searches for neutral fermionic, bosonic or anyonic excitations in unconventional insulators, highlighting theoretical and experimental progress in probing excitonic insulators, new quantum spin liquid candidates and emergent correlated insulators based on two-dimensional layered crystals and moiré materials. We outline the promises and challenges in probing and using quantum insulators, and discuss exciting new opportunities for future advancements offered by ideas rooted in next-generation quantum materials, devices and experimental schemes.

摘要

量子材料的实验揭示了许多有趣的量子相,从超导性到各种拓扑量子物质,包括最近观察到的分数量子反常霍尔绝缘体。这些发现与探索这些系统中固有丰富激发态的方法的发展是并行的。与观察带电激发相比,在凝聚态中探测电中性电子激发仍然很困难,尽管它们对于理解一大类强关联相是必不可少的。低能中性激发在表征具有电子分数化的非常规相(如量子自旋液体、自旋冰和具有中性费米面的绝缘体)方面尤为重要。在这篇观点文章中,我们讨论了在非常规绝缘体中寻找中性费米子、玻色子或任意子激发的研究,重点介绍了探测激子绝缘体、新的量子自旋液体候选物和基于二维层状晶体和莫尔材料的新兴关联绝缘体方面的理论和实验进展。我们概述了探测和利用量子绝缘体的前景和挑战,并讨论了基于下一代量子材料、器件和实验方案的思想为未来发展带来的令人兴奋的新机遇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验