Suppr超能文献

基于多源卫星数据和深度森林模型的中国一氧化碳浓度全范围估计

Full-coverage estimation of CO concentrations in China via multisource satellite data and Deep Forest model.

作者信息

Cai Kun, Guan Liuyin, Li Shenshen, Zhang Shuo, Liu Yang, Liu Yang

机构信息

School of Computer and Information Engineering, Henan University, Kaifeng, 475004, China.

Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China.

出版信息

Sci Data. 2024 Nov 14;11(1):1231. doi: 10.1038/s41597-024-04063-9.

Abstract

Monitoring China's carbon dioxide (CO) concentration is essential for formulating effective carbon cycle policies to achieve carbon peaking and neutrality. Despite insufficient satellite observation coverage, this study utilizes high-resolution spatiotemporal data from the Orbiting Carbon Observatory 2 (OCO-2), supplemented with various auxiliary datasets, to estimate full-coverage, monthly, column-averaged carbon dioxide (XCO) values across China from 2015 to 2022 at a spatial resolution of 0.05° via the deep forest model. The 10-fold cross-validation results indicate a correlation coefficient (R) of 0.95 and a determination coefficient (R²) of 0.90. Validation against ground-based station data yielded R values of 0.93, and R² values reached 0.81. Further validation from the Greenhouse Gases Observing Satellite (GOSAT) and the Copernicus Atmosphere Monitoring Service Reanalysis dataset (CAMS) produced R² values of 0.87 and 0.80, respectively. During the study period, CO concentrations in China were higher in spring and winter than in summer and autumn, indicating a clear annual increase. The estimates generated by this study could potentially support CO monitoring in China.

摘要

监测中国的二氧化碳(CO)浓度对于制定有效的碳循环政策以实现碳达峰和碳中和至关重要。尽管卫星观测覆盖范围不足,但本研究利用轨道碳观测站2(OCO-2)的高分辨率时空数据,并辅以各种辅助数据集,通过深度森林模型以0.05°的空间分辨率估算了2015年至2022年中国全范围、月度、柱平均二氧化碳(XCO)值。10倍交叉验证结果表明相关系数(R)为0.95,决定系数(R²)为0.90。与地面站数据验证得出R值为0.93,R²值达到0.81。来自温室气体观测卫星(GOSAT)和哥白尼大气监测服务再分析数据集(CAMS)的进一步验证分别产生了0.87和0.80的R²值。在研究期间,中国的CO浓度在春季和冬季高于夏季和秋季,呈现出明显的年度增长。本研究生成的估算结果可能为中国的CO监测提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d761/11564725/e3eda6b824d1/41597_2024_4063_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验