Kurakami Masaki, Hakura Atsushi, Sato Rika, Kawade Akihiro, Yamagata Takeshi, Koyama Naoki, Kakiuchi Dai, Asakura Shoji
Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki, 300-2635, Japan.
Tsukuba Division, Sunplanet Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki, 300-2635, Japan.
Genes Environ. 2024 Nov 14;46(1):23. doi: 10.1186/s41021-024-00316-6.
Although the in silico predictive ability of the Ames test results has recently made remarkable progress, there are still some chemical classes for which the predictive ability is not yet sufficient due to a lack of Ames test data. These classes include simple heterocyclic compounds. This study aimed to investigate the mutagenicity and structure-mutagenicity relationships for some heterocycles in the Ames test. In the present study, we selected 12 quinoline analogues containing one or two nitrogen atoms in the naphthalene ring and 12 indole analogues containing one to three nitrogen atoms in the indole ring, without any side moiety.
The Ames test was performed with five standard bacterial strains (TA100, TA1535, TA98, TA1537, and WP2uvrA) using the pre-incubation method with and without rat liver S9. Five quinoline and two indole analogues were mutagenic. Among the five quinoline analogues, four were mutagenic in the presence of S9 mix with TA100, whereas cinnoline was mutagenic in the absence of S9 mix with TA1537. Among the two indole analogues, indazole was mutagenic in the presence and absence of S9 mix with WP2uvrA and 4-azaindole was mutagenic in the absence of S9 mix with TA1537. The mechanisms underlying the induction of mutagenesis appear to differ between quinoline and indole analogues. In addition, we performed in silico analysis of the mutagenicity of all these analogues using DEREK Nexus 6.1.1 (Lhasa Limited) and GT_EXPERT from CASE Ultra 1.8.0.5 (MultiCASE Inc.) as knowledge-based models and GT1_BMUT from CASE Ultra 1.8.0.5 (MultiCASE Inc.) as a statistical-based model. The knowledge-based model showed low sensitivity for both the quinoline and indole analogues (DEREK Nexus and GT_EXPERT: 20% for quinolines and 0% for indoles). Conversely, the statistical model showed high sensitivity (100% for both quinolines and indoles) and low specificity (43% for quinolines and 10% for indoles).
Based on the Ames test results, we proposed structural alerts noting that quinoline analogues were mutagenic when they had nitrogens in any of the positions 2, 5, 7, or 8 in addition to 1, and indole analogues were mutagenic when they had nitrogens at positions 2 or 4 in addition to 1.
尽管艾姆斯试验结果的计算机预测能力最近取得了显著进展,但由于缺乏艾姆斯试验数据,仍有一些化学类别其预测能力尚不足够。这些类别包括简单杂环化合物。本研究旨在调查艾姆斯试验中一些杂环化合物的致突变性及结构 - 致突变性关系。在本研究中,我们选择了12种在萘环中含有一个或两个氮原子的喹啉类似物以及12种在吲哚环中含有一至三个氮原子且无任何侧链部分的吲哚类似物。
使用预孵育法,在有和没有大鼠肝脏S9的情况下,对五种标准细菌菌株(TA100、TA1535、TA98、TA1537和WP2uvrA)进行了艾姆斯试验。五种喹啉类似物和两种吲哚类似物具有致突变性。在这五种喹啉类似物中,四种在与TA100存在S9混合物的情况下具有致突变性,而噌啉在与TA1537不存在S9混合物的情况下具有致突变性。在这两种吲哚类似物中,吲唑在与WP2uvrA存在和不存在S9混合物的情况下均具有致突变性,4 - 氮杂吲哚在与TA1537不存在S9混合物的情况下具有致突变性。喹啉和吲哚类似物诱导突变的潜在机制似乎有所不同。此外,我们使用基于知识的模型DEREK Nexus 6.1.1(拉萨有限公司)和CASE Ultra 1.8.0.5(MultiCASE公司)的GT_EXPERT以及基于统计的模型CASE Ultra 1.8.0.5(MultiCASE公司)的GT1_BMUT对所有这些类似物的致突变性进行了计算机分析。基于知识的模型对喹啉和吲哚类似物均显示出低敏感性(DEREK Nexus和GT_EXPERT:喹啉为20%,吲哚为0%)。相反,统计模型显示出高敏感性(喹啉和吲哚均为100%)和低特异性(喹啉为43%,吲哚为10%)。
基于艾姆斯试验结果,我们提出了结构警示,指出喹啉类似物除1位外,在2、5、7或8位中的任何一位含有氮原子时具有致突变性,吲哚类似物除1位外,在2或4位含有氮原子时具有致突变性。