Suppr超能文献

沿海和内陆水域的长期水质评估:一种使用卫星数据的集成机器学习方法。

Long-term water quality assessment in coastal and inland waters: An ensemble machine-learning approach using satellite data.

作者信息

Karthick Murugan, Shanmugam Palanisamy, Saravana Kumar Gurunathan

机构信息

Ocean Optics and Imaging Laboratory, Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai 600036, India.

Ocean Optics and Imaging Laboratory, Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai 600036, India.

出版信息

Mar Pollut Bull. 2024 Dec;209(Pt B):117036. doi: 10.1016/j.marpolbul.2024.117036. Epub 2024 Nov 16.

Abstract

Accurate estimation of coastal and in-land water quality parameters is important for managing water resources and meeting the demand of sustainable development goals. The water quality monitoring based on discrete water sample analysis is limited to specific locations and becomes less effective to offer a synoptic view of the water quality variability at different spatial and temporal scales. The optical remote sensing techniques have proved their ability to provide a comprehensive and synoptic view of water quality parameters. In conjugation with other products, the optical remote sensing data products can be utilized for the effective management of water bodies while addressing the socio-economic issues faced by local governments and states. In recent years, multiple machine-learning (ML) models have been reported on the estimation of water quality using remote sensing data, but their performance is limited when extended to diverse water types within coastal and inland water environments. In this study, we present an ensemble machine-learning model for estimating the primary water quality parameters in coastal and inland waters, such as Chlorophyll-a (Chl-a) concentration, colored dissolved organic matter (a440), and Turbidity. It utilizes the in-situ measurements to train and optimize the ensemble machine-learning models for the spectral measurements data (400-700 nm) provided by MODIS-Aqua, Sentinel-2 Multi Spectral Instrument (MSI), and PlanetScope (Planet). To develop the prediction models, these in-situ measurements data were split into two parts: a training dataset (70 %) and a testing dataset (30 %). The ensemble machine-learning models were validated using the 5-fold cross-validation method. These models were trained and tested against distinct datasets encompassing a broad range of variations in water quality parameters collected from open ocean, coastal and inland waters. The validation results demonstrated a superior performance of the present ensemble ML models compared to other ML models (Chl-a: R = 0.96, RMSE = 4.93, MAE = 2.89; a440: R = 0.93, RMSE = 0.057, MAE = 0.025; Turbidity: R = 0.95, RMSE = 4.52, MAE = 1.009). To realize the importance of this study, the ensemble ML models were applied to MODIS-Aqua monthly composite measurements from 2003 to 2022 and captured pronounced seasonal variations in water quality parameters (WQP) and Water Quality Index (WQI). For instance, in the Gulf of Khambhat, turbidity decreased at an annual average rate of ∼0.08 NTU and Chl-a increased at an annual average rate of ∼0.004 mg m for the past 20 years. Furthermore, we investigated the occurrences of Noctiluca scintillans (here after N. scintillans) bloom between 2019 and 2021 near the fin fish cage culture sites in Mandapam, on the southeast coast of Tamil Nadu, within the Gulf of Mannar, India which serves as a documentation of the Harmful Algal Bloom (HAB) incidents. The performance of ensemble model is further demonstrated using Planet images from inland turbid waters of the Muthupet lagoon (Brackish water) and Adyar river (Urban River) and MSI image from Chilika lagoon. The proposed ensemble ML models proved as an effective method for accurately estimating the WQP and WQI products and capturing their spatial and temporal variations in regional and global waters, which forms an important tool for sustainable development and management of coastal and inland water environments.

摘要

准确估算沿海和内陆水质参数对于水资源管理以及实现可持续发展目标的要求至关重要。基于离散水样分析的水质监测仅限于特定位置,在提供不同空间和时间尺度上水质变化的全景视图方面效果欠佳。光学遥感技术已证明其有能力提供水质参数的全面和全景视图。与其他产品相结合,光学遥感数据产品可用于水体的有效管理,同时解决地方政府和州面临的社会经济问题。近年来,已有多篇关于利用遥感数据估算水质的机器学习(ML)模型的报道,但当扩展到沿海和内陆水环境中的多种水体类型时,其性能受到限制。在本研究中,我们提出了一种集成机器学习模型,用于估算沿海和内陆水体中的主要水质参数,如叶绿素a(Chl-a)浓度、有色溶解有机物(a440)和浊度。它利用现场测量数据对由中分辨率成像光谱仪-水色仪(MODIS-Aqua)、哨兵-2多光谱仪器(MSI)和行星Scope(Planet)提供的光谱测量数据(400 - 700纳米)训练和优化集成机器学习模型。为了建立预测模型,这些现场测量数据被分为两部分:训练数据集(70%)和测试数据集(30%)。集成机器学习模型使用五折交叉验证法进行验证。这些模型针对包含从公海、沿海和内陆水体收集的广泛水质参数变化的不同数据集进行训练和测试。验证结果表明,与其他机器学习模型相比,当前的集成ML模型具有卓越的性能(Chl-a:R = 0.96,RMSE = 4.93,MAE = 2.89;a440:R = 0.93,RMSE = 0.057,MAE = 0.025;浊度:R = 0.95,RMSE = 4.52,MAE = 1.009)。为了认识到本研究的重要性,将集成ML模型应用于2003年至2022年的MODIS-Aqua月度合成测量数据,并捕捉到了水质参数(WQP)和水质指数(WQI)明显的季节变化。例如,在肯帕德湾,过去20年浊度以每年约0.08 NTU的平均速率下降,Chl-a以每年约0.004毫克/立方米的平均速率增加。此外,我们调查了2019年至2021年期间印度马纳尔湾内泰米尔纳德邦东南海岸曼达帕姆附近的鱼类网箱养殖地点附近夜光藻(此后简称N. scintillans)水华的发生情况,这记录了有害藻华(HAB)事件。使用来自穆图佩特泻湖(咸水)和阿迪亚尔河(城市河流)的内陆浑浊水体的Planet图像以及奇利卡湖的MSI图像进一步证明了集成模型的性能。所提出的集成ML模型被证明是一种准确估算WQP和WQI产品并捕捉其在区域和全球水体中的空间和时间变化的有效方法,这构成了沿海和内陆水环境可持续发展和管理的重要工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验