Suppr超能文献

人工智能在前列腺癌中的应用:机器学习模型和神经网络预测机器人辅助根治性前列腺切除术后生化复发的潜力。

Artificial intelligence in prostate cancer: The potential of machine learning models and neural networks to predict biochemical recurrence after robot-assisted radical prostatectomy.

作者信息

Singh Gurpremjit, Agrawal Mayank, Talwar Gagandeep, Kankaria Sanket, Sharma Gopal, Ahluwalia Puneet, Gautam Gagan

机构信息

Department of Urology, Medanta the Medicity, Gurugram, Haryana, India.

出版信息

Indian J Urol. 2024 Oct-Dec;40(4):260-265. doi: 10.4103/iju.iju_75_24. Epub 2024 Oct 1.

Abstract

INTRODUCTION

This study aimed to evaluate the usefulness of machine learning (ML) and neural network (NN) models versus traditional statistical methods for estimating biochemical recurrence (BCR) in men following robot-assisted radical prostatectomy (RARP).

METHODS

Patients who underwent RARP from November 2011 to July 2022 were taken in the study. Patients with BCR were assigned to Group 2, whereas those without BCR were placed in Group 1. Preoperative and postoperative parameters, together with demographic data, were recorded in the database. This study used one NN, the radial basis function NN (RBFNN), and two ML approaches, the K-nearest neighbor and XGboost ML models, to predict BCR.

RESULTS

Following the application of exclusion criteria, 516 patients were deemed eligible for the study. Of those, 234 (45.3%) developed BCR, and 282 (54.7%) did not. The results showed that the median follow-up period was 24 (15-42) months, and the median BCR diagnosis was 12.23 ± 15.58 months. The area under the curve (AUC) for the Cox proportional hazard analysis was 0.77. The receiver-operating characteristic curves (AUCs) for the XGBoost and K closest neighbor models were 0.82 and 0.69, respectively. The RBFNN's AUC was 0.82.

CONCLUSIONS

The classical statistical model was outperformed by XGBoost and RBFNN models in predicting BCR.

摘要

引言

本研究旨在评估机器学习(ML)和神经网络(NN)模型相对于传统统计方法在估计机器人辅助根治性前列腺切除术(RARP)后男性生化复发(BCR)方面的有用性。

方法

纳入2011年11月至2022年7月接受RARP的患者。发生BCR的患者被分配到第2组,而未发生BCR的患者被分到第1组。术前和术后参数以及人口统计学数据被记录在数据库中。本研究使用一个神经网络,即径向基函数神经网络(RBFNN),以及两种机器学习方法,即K近邻和XGboost机器学习模型,来预测BCR。

结果

应用排除标准后,516例患者被认为符合研究条件。其中,234例(45.3%)发生了BCR,282例(54.7%)未发生。结果显示,中位随访期为24(15 - 42)个月,BCR的中位诊断时间为12.23±15.58个月。Cox比例风险分析的曲线下面积(AUC)为0.77。XGboost模型和K近邻模型的受试者操作特征曲线(AUC)分别为0.82和0.69。RBFNN的AUC为0.82。

结论

在预测BCR方面,XGboost和RBFNN模型优于经典统计模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7f0/11567574/2f078ac6b2c2/IJU-40-260-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验