Suppr超能文献

基于锥形束计算机断层扫描的骨质量分类中深度学习与牙种植学家的比较

A Comparison of Deep Learning vs. Dental Implantologists in Cone-Beam Computed Tomography-Based Bone Quality Classification.

作者信息

Pornvoranant Thatphong, Panyarak Wannakamon, Wantanajittikul Kittichai, Charuakkra Arnon, Rungsiyakull Pimduen, Chaijareenont Pisaisit

机构信息

Graduate School of Dentistry, Faculty of Dentistry, Chiang Mai University, Suthep Road, Suthep Sub-District, Mueang, Chiang Mai, 50200, Thailand.

Division of Oral and Maxillofacial Radiology, Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Suthep Road, Suthep Sub-District, Mueang, Chiang Mai, 50200, Thailand.

出版信息

J Imaging Inform Med. 2024 Nov 18. doi: 10.1007/s10278-024-01317-1.

Abstract

Bone quality assessment is crucial for pre-surgical implant planning, influencing both implant design and drilling protocol selection. The Lekholm and Zarb (L&Z) classification, which categorizes bone quality into four types based on cortical bone width and trabecular bone density using cone-beam computed tomography (CBCT) data, lacks quantitative guidelines, leading to subjective interpretations. This study aimed to compare the performance of deep learning (DL)-based approaches against human examiners in assessing bone quality, according to the L&Z classification, using CBCT images. A dataset of 1100 CBCT cross-sectional slices was classified into four bone types by two oral and maxillofacial radiologists. Five pre-trained DL models were trained on 1000 images using MATLAB, with 100 images reserved for testing. Inception-ResNet-v2 achieved the highest accuracy (86.00%) with a learning rate of 0.001. The performance of Inception-ResNet-v2 was then compared to that of 23 residency students and two experienced implantologists. The DL model outperformed human assessors across all parameters, demonstrating excellent precision and recall, with F1-scores exceeding 75%. Notably, residency students and one implantologist struggled to distinguish bone type 2, with low recall rates (48.15% and 40.74%, respectively). In conclusion, the Inception-ResNet-v2 DL model demonstrated superior performance compared to novice implantologists, suggesting its potential as an supplementary tool for cross-sectional bone quality assessment.

摘要

骨质量评估对于术前种植规划至关重要,会影响种植体设计和钻孔方案的选择。Lekholm和Zarb(L&Z)分类法使用锥形束计算机断层扫描(CBCT)数据,根据皮质骨宽度和小梁骨密度将骨质量分为四种类型,但缺乏定量指导方针,导致解释主观。本研究旨在使用CBCT图像,根据L&Z分类法,比较基于深度学习(DL)的方法与人类检查者在评估骨质量方面的表现。1100个CBCT横断面切片数据集由两名口腔颌面放射科医生分类为四种骨类型。使用MATLAB在1000张图像上训练五个预训练的DL模型,保留100张图像用于测试。Inception-ResNet-v2在学习率为0.001时达到了最高准确率(86.00%)。然后将Inception-ResNet-v2的性能与23名住院医师和两名经验丰富的种植外科医生的性能进行比较。DL模型在所有参数上均优于人类评估者,表现出出色的精度和召回率,F1分数超过75%。值得注意的是,住院医师和一名种植外科医生难以区分2型骨,召回率较低(分别为48.15%和40.74%)。总之,与新手种植外科医生相比,Inception-ResNet-v2 DL模型表现出卓越的性能,表明其作为横断面骨质量评估辅助工具的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验