Suppr超能文献

利用机器学习识别神经母细胞瘤免疫聚类的新型标志物。

Identification of novel markers for neuroblastoma immunoclustering using machine learning.

机构信息

State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.

Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.

出版信息

Front Immunol. 2024 Nov 4;15:1446273. doi: 10.3389/fimmu.2024.1446273. eCollection 2024.

Abstract

BACKGROUND

Due to the unique heterogeneity of neuroblastoma, its treatment and prognosis are closely related to the biological behavior of the tumor. However, the effect of the tumor immune microenvironment on neuroblastoma needs to be investigated, and there is a lack of biomarkers to reflect the condition of the tumor immune microenvironment.

METHODS

The GEO Database was used to download transcriptome data (both training dataset and test dataset) on neuroblastoma. Immunity scores were calculated for each sample using ssGSEA, and hierarchical clustering was used to categorize the samples into high and low immunity groups. Subsequently, the differences in clinicopathological characteristics and treatment between the different groups were examined. Three machine learning algorithms (LASSO, SVM-RFE, and Random Forest) were used to screen biomarkers and synthesize their function in neuroblastoma.

RESULTS

In the training set, there were 362 samples in the immunity_L group and 136 samples in the immunity_H group, with differences in age, MYCN status, etc. Additionally, the tumor microenvironment can also affect the therapeutic response of neuroblastoma. Six characteristic genes (BATF, CXCR3, GIMAP5, GPR18, ISG20, and IGHM) were identified by machine learning, and these genes are associated with multiple immune-related pathways and immune cells in neuroblastoma.

CONCLUSIONS

BATF, CXCR3, GIMAP5, GPR18, ISG20, and IGHM may serve as biomarkers that reflect the conditions of the immune microenvironment of neuroblastoma and hold promise in guiding neuroblastoma treatment.

摘要

背景

由于神经母细胞瘤具有独特的异质性,其治疗和预后与肿瘤的生物学行为密切相关。然而,肿瘤免疫微环境对神经母细胞瘤的影响仍需进一步研究,并且缺乏反映肿瘤免疫微环境状况的生物标志物。

方法

利用 GEO 数据库下载神经母细胞瘤的转录组数据(训练数据集和测试数据集)。使用 ssGSEA 计算每个样本的免疫评分,并使用层次聚类将样本分为高免疫和低免疫组。然后,检查不同组之间的临床病理特征和治疗差异。使用三种机器学习算法(LASSO、SVM-RFE 和随机森林)筛选生物标志物并综合其在神经母细胞瘤中的功能。

结果

在训练集中,免疫_L 组有 362 个样本,免疫_H 组有 136 个样本,两组间存在年龄、MYCN 状态等差异。此外,肿瘤微环境也会影响神经母细胞瘤的治疗反应。通过机器学习识别出 6 个特征基因(BATF、CXCR3、GIMAP5、GPR18、ISG20 和 IGHM),这些基因与神经母细胞瘤中的多个免疫相关途径和免疫细胞有关。

结论

BATF、CXCR3、GIMAP5、GPR18、ISG20 和 IGHM 可能成为反映神经母细胞瘤免疫微环境状况的生物标志物,有望指导神经母细胞瘤的治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/865e/11570813/64586b7a3e78/fimmu-15-1446273-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验