Du Peijin, Ding Jinyu, Liu Chengyuan, Li Peipei, Liu Wenxiu, Yan Wensheng, Pan Yang, Hu Jun, Zhu Junfa, Li Xiaodong, Chen Qingxia, Jiao Xingchen
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China.
Angew Chem Int Ed Engl. 2025 Mar 3;64(10):e202421353. doi: 10.1002/anie.202421353. Epub 2024 Nov 27.
Producing ethylene (CH) from carbon dioxide (CO) photoreduction under mild conditions is primarily restricted by the difficulty of C-C coupling. Herein, we designed highly active metal atom clusters anchored on semiconductor nanosheets, which established heteroatom sites on the interface to steer C-C coupling, realizing air-concentration CO photoreduction into CH in pure water. As an example, the Pd nanoclusters loaded on ZnO nanosheets are prepared, demonstrated by the X-ray photoelectron spectroscopy and high-angle annular dark-field image. In situ Fourier transform infrared spectroscopy confirms the C-C coupling step over the Pd-ZnO nanosheets, while quasi in situ X-ray photoelectron spectroscopy illustrates the active sites of Pd and Zn atoms on the Pd-ZnO nanosheets during CO photoreduction. Density functional theoretical calculations unveil the transition state energy barrier of C-C coupling of CO* and COH* intermediates are only 0.998 eV, hinting the easy C-C coupling to produce C fuels. Therefore, the Pd-ZnO nanosheets realize CH photosynthesis by atmospheric-concentration CO reduction with the formation rate of 1.03 μmol g h, while the ZnO nanosheets only acquired the carbon monoxide product.
在温和条件下通过二氧化碳光还原制备乙烯(CH)主要受限于碳-碳偶联的困难。在此,我们设计了锚定在半导体纳米片上的高活性金属原子簇,其在界面上建立了杂原子位点以引导碳-碳偶联,从而在纯水中实现了将空气中浓度的二氧化碳光还原为甲烷。例如,制备了负载在氧化锌纳米片上的钯纳米簇,并通过X射线光电子能谱和高角度环形暗场图像进行了表征。原位傅里叶变换红外光谱证实了钯-氧化锌纳米片上的碳-碳偶联步骤,而准原位X射线光电子能谱则说明了在二氧化碳光还原过程中钯-氧化锌纳米片上钯和锌原子的活性位点。密度泛函理论计算表明,一氧化碳和一氧化碳氢中间体碳-碳偶联的过渡态能垒仅为0.998电子伏特,这表明碳-碳偶联易于产生碳燃料。因此,钯-氧化锌纳米片通过将大气浓度的二氧化碳还原实现了甲烷光合作用,生成速率为1.03微摩尔·克⁻¹·小时⁻¹,而氧化锌纳米片仅获得一氧化碳产物。