Villegas-Ch William, Govea Jaime, Gaibor-Naranjo Walter, Sanchez-Viteri Santiago
Escuela de Ingeniería en Ciberseguridad, FICA, Universidad de Las Américas, Quito, Ecuador.
Carrera de Ciencias de la Computación, Universidad Politécnica Salesiana, Quito, Ecuador.
Front Artif Intell. 2024 Nov 6;7:1398126. doi: 10.3389/frai.2024.1398126. eCollection 2024.
In the contemporary realm of industry, the imperative for influential and steadfast systems to detect anomalies is critically recognized. Our study introduces a cutting-edge approach utilizing a deep learning model of the Long-Short Term Memory variety, meticulously crafted for real-time surveillance and mitigation of irregularities within industrial settings. Through the careful amalgamation of data acquisition and analytic processing informed by our model, we have forged a system adept at pinpointing anomalies with high precision, capable of autonomously proposing or implementing remedial measures. The findings demonstrate a marked enhancement in the efficacy of operations, with the model's accuracy surging to 95%, recall at 90%, and an F1 score reaching 92.5%. Moreover, the system has favorably impacted the environment, evidenced by a 25% decline in CO2 emissions and a 20% reduction in water usage. Our model surpasses preceding systems, showcasing significant gains in speed and precision. This research corroborates the capabilities of deep learning within the industrial sector. It underscores the role of automated systems in fostering more sustainable and efficient operations in the contemporary industrial landscape.
在当代工业领域,人们已深刻认识到拥有强大且可靠的异常检测系统的必要性。我们的研究引入了一种前沿方法,该方法利用长短期记忆(Long-Short Term Memory)类型的深度学习模型,此模型是为实时监测和缓解工业环境中的异常情况而精心构建的。通过我们的模型对数据采集和分析处理进行精心整合,我们打造了一个能够高精度识别异常的系统,该系统能够自主提出或实施补救措施。研究结果表明,运营效率有了显著提高,模型的准确率飙升至95%,召回率达到90%,F1分数达到92.5%。此外,该系统对环境产生了积极影响,二氧化碳排放量下降了25%,用水量减少了20%。我们的模型超越了先前的系统,在速度和精度方面都有显著提升。这项研究证实了深度学习在工业领域的能力。它强调了自动化系统在当代工业格局中促进更可持续、高效运营方面的作用。