Suppr超能文献

基于注意力机制卷积神经网络-双向长短期记忆网络的锂离子电池健康状态估计与剩余使用寿命预测应用

Application of state of health estimation and remaining useful life prediction for lithium-ion batteries based on AT-CNN-BiLSTM.

作者信息

Zhao Feng-Ming, Gao De-Xin, Cheng Yuan-Ming, Yang Qing

机构信息

Department of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao, 266061, China.

Department of Computer Science and Technology, Qingdao University of Science and Technology, Qingdao, 266061, China.

出版信息

Sci Rep. 2024 Nov 23;14(1):29026. doi: 10.1038/s41598-024-80421-2.

Abstract

Ensuring the long-term safe usage of lithium-ion batteries hinges on accurately estimating the State of Health [Formula: see text] and predicting the Remaining Useful Life (RUL). This study proposes a novel prediction method based on a AT-CNN-BiLSTM architecture. Initially, key parameters such as voltage, current, temperature, and SOH are extracted and averaged for each cycle to ensure the uniformity and reliability of the input data. The CNN is utilized to extract deep features from the data, followed by BiLSTM to analyze the temporal dependencies in the data sequences. Since multidimensional parameter data are used to predict the SOH trend of lithium-ion batteries, an attention mechanism is employed to enhance the weight of highly relevant vectors, improving the model's analytical capabilities. Experimental results demonstrate that the CNN-BiLSTM-Attention model achieves an absolute error of 0 in RUL prediction, an [Formula: see text] value greater than 0.9910 , and a MAPE value less than 0.9003 . Comparative analysis with hybrid neural network algorithms such as LSTM, BiLSTM, and CNN-LSTM confirms the proposed model's high accuracy and stability in SOH estimation and RUL prediction.

摘要

确保锂离子电池的长期安全使用取决于准确估计健康状态[公式:见原文]并预测剩余使用寿命(RUL)。本研究提出了一种基于AT-CNN-BiLSTM架构的新型预测方法。首先,提取电压、电流、温度和SOH等关键参数,并对每个周期进行平均,以确保输入数据的一致性和可靠性。利用卷积神经网络(CNN)从数据中提取深度特征,然后使用双向长短期记忆网络(BiLSTM)分析数据序列中的时间依赖性。由于使用多维参数数据来预测锂离子电池的SOH趋势,因此采用注意力机制来增强高度相关向量的权重,提高模型的分析能力。实验结果表明,CNN-BiLSTM-Attention模型在RUL预测中的绝对误差为0,[公式:见原文]值大于0.9910,平均绝对百分比误差(MAPE)值小于0.9003。与长短期记忆网络(LSTM)、双向长短期记忆网络(BiLSTM)和卷积神经网络-长短期记忆网络(CNN-LSTM)等混合神经网络算法的对比分析证实了所提模型在SOH估计和RUL预测方面具有较高的准确性和稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a73c/11584646/ce8914bc9b4d/41598_2024_80421_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验