Suppr超能文献

模拟生存时间结局的边缘结构模型数据。

Simulating Data From Marginal Structural Models for a Survival Time Outcome.

机构信息

MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.

Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK.

出版信息

Biom J. 2024 Dec;66(8):e70010. doi: 10.1002/bimj.70010.

Abstract

Marginal structural models (MSMs) are often used to estimate causal effects of treatments on survival time outcomes from observational data when time-dependent confounding may be present. They can be fitted using, for example, inverse probability of treatment weighting (IPTW). It is important to evaluate the performance of statistical methods in different scenarios, and simulation studies are a key tool for such evaluations. In such simulation studies, it is common to generate data in such a way that the model of interest is correctly specified, but this is not always straightforward when the model of interest is for potential outcomes, as is an MSM. Methods have been proposed for simulating from MSMs for a survival outcome, but these methods impose restrictions on the data-generating mechanism. Here, we propose a method that overcomes these restrictions. The MSM can be, for example, a marginal structural logistic model for a discrete survival time or a Cox or additive hazards MSM for a continuous survival time. The hazard of the potential survival time can be conditional on baseline covariates, and the treatment variable can be discrete or continuous. We illustrate the use of the proposed simulation algorithm by carrying out a brief simulation study. This study compares the coverage of confidence intervals calculated in two different ways for causal effect estimates obtained by fitting an MSM via IPTW.

摘要

边缘结构模型(MSMs)常用于从观察性数据中估计治疗对生存时间结果的因果效应,当存在时变混杂时。可以使用逆概率治疗加权(IPTW)等方法来拟合它们。在不同情况下评估统计方法的性能非常重要,而模拟研究是此类评估的重要工具。在这种模拟研究中,通常以正确指定感兴趣模型的方式生成数据,但当感兴趣的模型是潜在结果时,情况并非总是如此,这正是 MSM 的情况。已经提出了用于从生存结果的 MSM 中进行模拟的方法,但这些方法对数据生成机制施加了限制。在这里,我们提出了一种克服这些限制的方法。MSM 可以是例如用于离散生存时间的边缘结构逻辑模型,或者用于连续生存时间的 Cox 或加法风险 MSM。潜在生存时间的风险可以基于基线协变量,并且治疗变量可以是离散的或连续的。我们通过进行简短的模拟研究来说明所提出的模拟算法的使用。该研究比较了通过 IPTW 拟合 MSM 获得因果效应估计值时以两种不同方式计算的置信区间的覆盖范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3892/11585228/bf4101ece727/BIMJ-66-e70010-g001.jpg

相似文献

1
Simulating Data From Marginal Structural Models for a Survival Time Outcome.
Biom J. 2024 Dec;66(8):e70010. doi: 10.1002/bimj.70010.
2
Simulating longitudinal data from marginal structural models using the additive hazard model.
Biom J. 2021 Oct;63(7):1526-1541. doi: 10.1002/bimj.202000040. Epub 2021 May 13.
5
Doubly Robust and Efficient Estimation of Marginal Structural Models for the Hazard Function.
Int J Biostat. 2016 May 1;12(1):233-52. doi: 10.1515/ijb-2015-0036.
8
The additive hazard estimator is consistent for continuous-time marginal structural models.
Lifetime Data Anal. 2019 Oct;25(4):611-638. doi: 10.1007/s10985-019-09468-y. Epub 2019 Feb 23.
9
History-restricted marginal structural model and latent class growth analysis of treatment trajectories for a time-dependent outcome.
Int J Biostat. 2024 Aug 12;20(2):467-490. doi: 10.1515/ijb-2023-0116. eCollection 2024 Nov 1.
10
A Bayesian nonparametric approach to marginal structural models for point treatments and a continuous or survival outcome.
Biostatistics. 2017 Jan;18(1):32-47. doi: 10.1093/biostatistics/kxw029. Epub 2016 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验