Suppr超能文献

一种基于小波域从超低剂量正电子发射断层扫描(PET)恢复标准剂量成像质量的深度学习方法。

A deep learning method for the recovery of standard-dose imaging quality from ultra-low-dose PET on wavelet domain.

作者信息

Xue Song, Liu Fanxuan, Wang Hanzhong, Zhu Hong, Sari Hasan, Viscione Marco, Sznitman Raphael, Rominger Axel, Guo Rui, Li Biao, Shi Kuangyu

机构信息

Department of Nuclear Medicine, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland.

ARTORG Center, University of Bern, Bern, Switzerland.

出版信息

Eur J Nucl Med Mol Imaging. 2025 Apr;52(5):1901-1911. doi: 10.1007/s00259-024-06994-2. Epub 2024 Nov 25.

Abstract

PURPOSE

Recent development in positron emission tomography (PET) dramatically increased the effective sensitivity by increasing the geometric coverage leading to total-body PET imaging. This encouraging breakthrough brings the hope of ultra-low dose PET imaging equivalent to transatlantic flight with the assistance of deep learning (DL)-based methods. However, conventional DL approaches face limitations in addressing the heterogeneous domain of PET imaging. This study aims to develop a wavelet-based DL method capable of restoring high-quality imaging from ultra-low-dose PET scans.

MATERIALS AND METHODS

In contrast to conventional DL techniques that denoise images in the spatial domain, we introduce WaveNet, a novel approach that inputs wavelet-decomposed frequency components of PET imaging to perform denoising in the frequency domain. A dataset comprising total-body F -FDG PET images of 1447, acquired using total-body PET scanners including Biograph Vision Quadra (Siemens Healthineers) and uEXPLORER (United Imaging) in Bern and Shanghai, was utilized for developing and testing the proposed method. The quality of enhanced images was assessed using a customized scoring system, which incorporated weighted global physical metrics and local indices.

RESULTS

Our proposed WaveNet consistently outperforms the baseline UNet model across all levels of dose reduction factors (DRF), with greater improvements observed as image quality decreases. Statistical analysis (p < 0.05) and visual inspection validated the superiority of WaveNet. Moreover, WaveNet demonstrated superior generalizability when applied to two cross-scanner datasets (p < 0.05).

CONCLUSION

WaveNet developed with total-body PET scanners may offer a computational-friendly and robust approach to recover image quality from ultra-low-dose PET imaging. Its adoption may enhance the reliability and clinical acceptance of DL-based dose reduction techniques.

摘要

目的

正电子发射断层扫描(PET)的最新进展通过增加几何覆盖范围显著提高了有效灵敏度,从而实现了全身PET成像。这一令人鼓舞的突破带来了在基于深度学习(DL)的方法辅助下进行超低剂量PET成像的希望,其辐射剂量相当于跨大西洋飞行。然而,传统的DL方法在处理PET成像的异质领域时面临局限性。本研究旨在开发一种基于小波的DL方法,能够从超低剂量PET扫描中恢复高质量图像。

材料与方法

与在空间域对图像进行去噪的传统DL技术不同,我们引入了WaveNet,这是一种新颖的方法,它输入PET成像的小波分解频率分量以在频域中执行去噪。使用包括位于伯尔尼和上海的Biograph Vision Quadra(西门子医疗)和uEXPLORER(联影医疗)在内的全身PET扫描仪采集的1447例全身F-FDG PET图像数据集用于开发和测试所提出的方法。使用定制的评分系统评估增强图像的质量,该系统纳入了加权全局物理指标和局部指标。

结果

我们提出的WaveNet在所有剂量降低因子(DRF)水平上始终优于基线UNet模型,并且随着图像质量的下降,改进更为明显。统计分析(p < 0.05)和视觉检查验证了WaveNet的优越性。此外,当应用于两个跨扫描仪数据集时,WaveNet表现出卓越的通用性(p < 0.05)。

结论

利用全身PET扫描仪开发的WaveNet可能提供一种计算友好且强大的方法,从超低剂量PET成像中恢复图像质量。其采用可能会提高基于DL的剂量降低技术的可靠性和临床可接受性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验