Suppr超能文献

基于多期增强CT影像组学的透明细胞肾细胞癌周围组织浸润预测研究

Prediction study of surrounding tissue invasion in clear cell renal cell carcinoma based on multi-phase enhanced CT radiomics.

作者信息

Wu Mengwei, Zhu Hanlin, Han Zhijiang, Xu Xingjian, Liu Yiming, Cao Huijun, Zhu Xisong

机构信息

The Quzhou Affiliated Hospital of Wenzhou Medical University, (Quzhou People's Hospital), Quzhou, China.

Hangzhou Ninth People's Hospital (Hangzhou Red Cross Hospital Qiantang Campus), Hangzhou, China.

出版信息

Abdom Radiol (NY). 2025 Jun;50(6):2533-2548. doi: 10.1007/s00261-024-04712-y. Epub 2024 Nov 26.

Abstract

OBJECTIVE

To examine the effectiveness of a nomogram model that combines clinical-image features and CT radiomics in predicting surrounding tissue invasion (STI) in clear cell renal cell carcinoma (ccRCC) patients before surgery.

METHODS

Postoperative pathological data of 248 ccRCC patients from two centers were retrospectively collected. Univariate and multivariate regression analyses were used to identify clinical and image features of ccRCC patients to construct a clinical model. Radiomics features were extracted from three CT scans, including tumoral, intratumor, and peritumoral regions. A nomogram was developed by integrating clinical model with optimal radiomics signature. The Shapley Additive Explanations (SHAP) method was used for interpretation.

RESULTS

This study included 65 ccRCC patients with STI and 183 patients without STI. The AUC of the clinical model was 0.766, 0.765, and 0.698 in the training cohort, internal validation cohort, and external validation cohort, respectively. The AUCs were higher in the radiomics signature based on ROI4 in NP than other radiomics (training cohort: 0.837 vs. 0.775-0.847; internal validation cohort: 0.831 vs. 0.695-0.811; external validation cohort: 0.762 vs. 0.623-0.731). Integrating the optimal radiomics signature with the clinical model to construct a combined model resulted in an AUC of 0.890, 0.886, and 0.826 in the training cohort, internal validation cohort, external validation cohort, respectively. SHAP values analysis revealed the top three radiomics features to be Small Dependence Low Gray Level Emphasis, Maximum 3D Diameter, and Maximum Probability.

CONCLUSION

A nomogram based on preoperative CT and clinical image features is a reliable tool for predicting STI in ccRCC patients. The use of SHAP values can help popularize this tool.

摘要

目的

研究一种结合临床影像特征和CT影像组学的列线图模型在预测透明细胞肾细胞癌(ccRCC)患者术前周围组织侵犯(STI)方面的有效性。

方法

回顾性收集来自两个中心的248例ccRCC患者的术后病理数据。采用单因素和多因素回归分析来确定ccRCC患者的临床和影像特征,以构建临床模型。从三次CT扫描中提取影像组学特征,包括肿瘤、瘤内和瘤周区域。通过将临床模型与最佳影像组学特征相结合来开发列线图。使用Shapley加性解释(SHAP)方法进行解释。

结果

本研究纳入了65例有STI的ccRCC患者和183例无STI的患者。临床模型在训练队列、内部验证队列和外部验证队列中的AUC分别为0.766、0.765和0.698。基于NP中ROI4的影像组学特征的AUC高于其他影像组学(训练队列:0.837对0.775 - 0.847;内部验证队列:0.831对0.695 - 0.811;外部验证队列:0.762对0.623 - 0.731)。将最佳影像组学特征与临床模型相结合构建联合模型,在训练队列、内部验证队列、外部验证队列中的AUC分别为0.890、0.886和0.826。SHAP值分析显示,前三个影像组学特征为小依赖低灰度级强调、最大三维直径和最大概率。

结论

基于术前CT和临床影像特征的列线图是预测ccRCC患者STI的可靠工具。SHAP值的使用有助于推广该工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验