Suppr超能文献

cDVAE:用于粒子加速器束流6维相空间投影诊断的变分自编码器引导扩散法

cDVAE: VAE-guided diffusion for particle accelerator beam 6D phase space projection diagnostics.

作者信息

Scheinker Alexander

机构信息

Applied Electrodynamics Group, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA.

出版信息

Sci Rep. 2024 Nov 26;14(1):29303. doi: 10.1038/s41598-024-80751-1.

Abstract

Imaging the 6D phase space of a beam in a particle accelerator in a single shot is currently impossible. Single shot beam measurements only exist for certain 2D beam projections and these methods are destructive. A virtual diagnostic that can generate an accurate prediction of a beam's 6D phase space would be incredibly useful for precisely controlling the beam. In this work, a generative conditional diffusion- based approach to creating a virtual diagnostic of all 15 unique 2D projections of a beam's 6D phase space is developed. The diffusion process is guided by a combination of scalar parameters and images that are converted to low-dimensional latent vector representation by a variational autoencoder (VAE). We demonstrate that conditional diffusion guided by a VAE (cDVAE) can accurately reconstruct all 15 of the unique 2D projections of a charged particle beam's 6D phase space for the HiRES compact accelerator.

摘要

目前,在单次测量中对粒子加速器中束流的六维相空间进行成像尚无法实现。单次束流测量仅存在于某些二维束流投影中,并且这些方法具有破坏性。一种能够生成束流六维相空间精确预测的虚拟诊断工具对于精确控制束流将非常有用。在这项工作中,开发了一种基于生成条件扩散的方法,用于创建束流六维相空间所有15个独特二维投影的虚拟诊断。扩散过程由标量参数和图像的组合引导,这些标量参数和图像通过变分自编码器(VAE)转换为低维潜在向量表示。我们证明,由VAE引导的条件扩散(cDVAE)可以准确重建HiRES紧凑型加速器中带电粒子束六维相空间的所有15个独特二维投影。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6373/11599399/cb40f34f0dba/41598_2024_80751_Fig1_HTML.jpg

相似文献

1
cDVAE: VAE-guided diffusion for particle accelerator beam 6D phase space projection diagnostics.
Sci Rep. 2024 Nov 26;14(1):29303. doi: 10.1038/s41598-024-80751-1.
2
Conditional guided generative diffusion for particle accelerator beam diagnostics.
Sci Rep. 2024 Aug 19;14(1):19210. doi: 10.1038/s41598-024-70302-z.
5
Phase Space Reconstruction from Accelerator Beam Measurements Using Neural Networks and Differentiable Simulations.
Phys Rev Lett. 2023 Apr 7;130(14):145001. doi: 10.1103/PhysRevLett.130.145001.
6
Time-inversion of spatiotemporal beam dynamics using uncertainty-aware latent evolution reversal.
Phys Rev E. 2025 Feb;111(2-2):025307. doi: 10.1103/PhysRevE.111.025307.
8
Azimuthal particle redistribution for the reduction of latent phase-space variance in Monte Carlo simulations.
Phys Med Biol. 2007 Jul 21;52(14):4345-60. doi: 10.1088/0031-9155/52/14/021. Epub 2007 Jun 21.
9
A multimodal dynamical variational autoencoder for audiovisual speech representation learning.
Neural Netw. 2024 Apr;172:106120. doi: 10.1016/j.neunet.2024.106120. Epub 2024 Jan 11.
10
Optimized beam planning for linear accelerator-based stereotactic radiosurgery.
Int J Radiat Oncol Biol Phys. 1997 Dec 1;39(5):1183-9. doi: 10.1016/s0360-3016(97)00344-1.

引用本文的文献

1
A brain tumor segmentation enhancement in MRI images using U-Net and transfer learning.
BMC Med Imaging. 2025 Jul 31;25(1):307. doi: 10.1186/s12880-025-01837-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验