Suppr超能文献

脂质积聚产物和心脏代谢指数作为识别有代谢综合征风险运动员的有效工具。

Lipid Accumulation Product and Cardiometabolic Index as Effective Tools for the Identification of Athletes at Risk for Metabolic Syndrome.

作者信息

Di Gioia Giuseppe, Ferrera Armando, Celeski Mihail, Mistrulli Raffaella, Lemme Erika, Mango Federica, Squeo Maria Rosaria, Pelliccia Antonio

机构信息

Institute of Medicine and Sport Science, National Italian Olympic Committee, Largo Piero Gabrielli, 1, 00197 Rome, Italy.

Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis, 15, 00135 Rome, Italy.

出版信息

Life (Basel). 2024 Nov 8;14(11):1452. doi: 10.3390/life14111452.

Abstract

INTRODUCTION

Metabolic syndrome (MS) is a growing global public health concern that is associated with increased risk for cardiovascular events, even in athletes. The lipid accumulation product (LAP) index and cardiometabolic index (CMI) have been shown to be efficient markers of MS in the general population; its applicability in athletes has not been discussed yet. We aimed to assess the role of LAP and CMI in predicting MS in athletes.

METHODS

We retrospectively enrolled 793 Olympic athletes practicing different sporting disciplines (power, skill, endurance, and mixed), classified arbitrarily into no risk (NR), low risk (LR), high risk (HR), or MS if they had 0, 1, 2, or 3 criteria for MS, respectively. Evaluations included a calculation of the LAP index, CMI, anthropometric measurements, and clinical and laboratorial variables.

RESULTS

Among our population, only 0.8% reached the criteria for MS, 9.1% were at HR for MS, 37.8% were defined as LR, and 52.3% had NR. Significant differences in anthropometric parameters and the principal components of MS criteria (blood pressure, lipidic profile, glycemia) were reported predominantly in HR athletes and those with MS ( < 0.0001). LAP and CMI presented linearly increasing values from individuals with NR to those with MS ( < 0.0001). In addition, HR and MS athletes were classified as "likely MS" (9.8%) and LR and NR athletes as "unlikely MS" (90.2%). After adjusting for potential confounders, LAP ≥ 34.66 and CMI ≥ 0.776 emerged as independent predictors for MS in the overall cohort (Hazar Ratio (HR) 7.22 [3.75-13.89], < 0.0001, and HR 5.37 [2.96-9.73], < 0.0001, respectively). The ROC curve revealed that these cut-offs in the general population predict MS with an area under the curve (AUC) of 0.80 and 0.79, respectively, for LAP and CMI. However, gender-related cut-offs seem to be more precise in predicting MS (LAP ≥ 38.79 for male, LAP ≥ 14.16 for female, and CMI ≥ 0.881 for male and ≥0.965 for female).

CONCLUSION

The ROC curve analyses of LAP and CMI showed good diagnostic accuracy in predicting MS among athletes, despite the low prevalence of MS in our sample. Thus, these indexes may be used to promote screening for primary prevention and early detection of athletes at risk for MS to establish an early prevention strategy. Larger prospective studies are necessary to validate their benefit in the general population.

摘要

引言

代谢综合征(MS)是一个日益引起全球关注的公共卫生问题,即使在运动员中,它也与心血管事件风险增加相关。脂质蓄积产物(LAP)指数和心脏代谢指数(CMI)已被证明是一般人群中MS的有效标志物;其在运动员中的适用性尚未得到讨论。我们旨在评估LAP和CMI在预测运动员MS中的作用。

方法

我们回顾性纳入了793名从事不同体育项目(力量、技巧、耐力和混合项目)的奥运会运动员,根据他们是否分别有0、1、2或3项MS标准,将其任意分为无风险(NR)、低风险(LR)、高风险(HR)或MS组。评估包括LAP指数、CMI的计算、人体测量以及临床和实验室变量。

结果

在我们的研究人群中,只有0.8%达到MS标准,9.1%处于MS的高风险,37.8%被定义为低风险,52.3%无风险。人体测量参数和MS标准的主要成分(血压、血脂谱、血糖)的显著差异主要见于高风险运动员和患有MS的运动员(<0.0001)。从无风险个体到患有MS的个体,LAP和CMI呈现线性增加的值(<0.0001)。此外,高风险和患有MS的运动员被归类为“可能患有MS”(9.8%),低风险和无风险运动员被归类为“不太可能患有MS”(90.2%)。在调整潜在混杂因素后,LAP≥34.66和CMI≥0.776成为整个队列中MS的独立预测因素(风险比(HR)分别为7.22 [3.75 - 13.89],<0.0001,以及HR 5.37 [2.96 - 9.73],<0.0001)。ROC曲线显示,在一般人群中,这些切点预测MS的曲线下面积(AUC)对于LAP和CMI分别为0.80和0.79。然而,与性别相关的切点在预测MS方面似乎更精确(男性LAP≥38.79,女性LAP≥14.16,男性CMI≥0.881,女性CMI≥0.965)。

结论

LAP和CMI的ROC曲线分析显示,尽管我们样本中MS的患病率较低,但在预测运动员的MS方面具有良好的诊断准确性。因此,这些指标可用于促进对有MS风险的运动员进行一级预防筛查和早期检测,以制定早期预防策略。需要更大规模的前瞻性研究来验证它们在一般人群中的益处。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验