Suppr超能文献

一种基于状态空间注意力和特征融合的精确玉米病害检测深度学习模型。

A Deep Learning Model for Accurate Maize Disease Detection Based on State-Space Attention and Feature Fusion.

作者信息

Zhu Tong, Yan Fengyi, Lv Xinyang, Zhao Hanyi, Wang Zihang, Dong Keqin, Fu Zhengjie, Jia Ruihao, Lv Chunli

机构信息

China Agricultural University, Beijing 100083, China.

出版信息

Plants (Basel). 2024 Nov 9;13(22):3151. doi: 10.3390/plants13223151.

Abstract

In improving agricultural yields and ensuring food security, precise detection of maize leaf diseases is of great importance. Traditional disease detection methods show limited performance in complex environments, making it challenging to meet the demands for precise detection in modern agriculture. This paper proposes a maize leaf disease detection model based on a state-space attention mechanism, aiming to effectively utilize the spatiotemporal characteristics of maize leaf diseases to achieve efficient and accurate detection. The model introduces a state-space attention mechanism combined with a multi-scale feature fusion module to capture the spatial distribution and dynamic development of maize diseases. In experimental comparisons, the proposed model demonstrates superior performance in the task of maize disease detection, achieving a precision, recall, accuracy, and F1 score of 0.94. Compared with baseline models such as AlexNet, GoogLeNet, ResNet, EfficientNet, and ViT, the proposed method achieves a precision of 0.95, with the other metrics also reaching 0.94, showing significant improvement. Additionally, ablation experiments verify the impact of different attention mechanisms and loss functions on model performance. The standard self-attention model achieved a precision, recall, accuracy, and F1 score of 0.74, 0.70, 0.72, and 0.72, respectively. The Convolutional Block Attention Module (CBAM) showed a precision of 0.87, recall of 0.83, accuracy of 0.85, and F1 score of 0.85, while the state-space attention module achieved a precision of 0.95, with the other metrics also at 0.94. In terms of loss functions, cross-entropy loss showed a precision, recall, accuracy, and F1 score of 0.69, 0.65, 0.67, and 0.67, respectively. Focal loss showed a precision of 0.83, recall of 0.80, accuracy of 0.81, and F1 score of 0.81. State-space loss demonstrated the best performance in these experiments, achieving a precision of 0.95, with recall, accuracy, and F1 score all at 0.94. These results indicate that the model based on the state-space attention mechanism achieves higher detection accuracy and better generalization ability in the task of maize leaf disease detection, effectively improving the accuracy and efficiency of disease recognition and providing strong technical support for the early diagnosis and management of maize diseases. Future work will focus on further optimizing the model's spatiotemporal feature modeling capabilities and exploring multi-modal data fusion to enhance the model's application in real agricultural scenarios.

摘要

在提高农业产量和确保粮食安全方面,精确检测玉米叶部病害至关重要。传统的病害检测方法在复杂环境中表现有限,难以满足现代农业精确检测的需求。本文提出了一种基于状态空间注意力机制的玉米叶部病害检测模型,旨在有效利用玉米叶部病害的时空特征,实现高效准确的检测。该模型引入了结合多尺度特征融合模块的状态空间注意力机制,以捕捉玉米病害的空间分布和动态发展。在实验比较中,所提出的模型在玉米病害检测任务中表现出卓越性能,精确率、召回率、准确率和F1分数达到0.94。与AlexNet、GoogLeNet、ResNet、EfficientNet和ViT等基线模型相比,所提出的方法精确率达到0.95,其他指标也达到0.94,显示出显著改进。此外,消融实验验证了不同注意力机制和损失函数对模型性能的影响。标准自注意力模型的精确率、召回率、准确率和F1分数分别为0.74、0.70、0.72和0.72。卷积块注意力模块(CBAM)的精确率为0.87,召回率为0.83,准确率为0.85,F1分数为0.85,而状态空间注意力模块的精确率为0.95,其他指标也为0.94。在损失函数方面,交叉熵损失的精确率、召回率、准确率和F1分数分别为0.69、0.65、0.67和0.67。焦点损失的精确率为0.83,召回率为0.80,准确率为0.81,F1分数为0.81。状态空间损失在这些实验中表现最佳,精确率为0.95,召回率、准确率和F1分数均为0.94。这些结果表明,基于状态空间注意力机制的模型在玉米叶部病害检测任务中实现了更高的检测准确率和更好的泛化能力,有效提高了病害识别的准确性和效率,为玉米病害的早期诊断和管理提供了有力的技术支持。未来的工作将集中在进一步优化模型的时空特征建模能力,并探索多模态数据融合,以增强模型在实际农业场景中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/601e/11597867/27a44df91a56/plants-13-03151-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验