Norman Joshua S, Mehta Neil, Kim W Ray, Liang Jane W, Biggins Scott W, Asrani Sumeet K, Heimbach Julie, Charu Vivek, Kwong Allison J
Department of Medicine, Stanford University, Palo Alto, California.
Division of Gastroenterology, University of California, San Francisco, San Francisco, California.
Gastroenterology. 2025 Apr;168(4):784-794.e4. doi: 10.1053/j.gastro.2024.11.015. Epub 2024 Nov 30.
BACKGROUND & AIMS: Currently, patients with hepatocellular carcinoma (HCC) in the United States are assigned a uniform score relative to the median Model for End-Stage Liver Disease (MELD) at transplant after a minimum 6-month waiting period. The authors developed a risk stratification model for patients with HCC using the available and objective variables at time of listing.
Adult liver transplant candidates with approved HCC exception in the Organ Procurement and Transplantation Network database from 2015-2022 were identified. Cox regression analysis, as well as machine learning models (random survival forest and neural network), were used to develop models predicting waitlist dropout. Predicted waitlist dropout for patients with HCC was scaled to patients without exception using MELD 3.0.
There were 18,273 patients with HCC listed for liver transplant with a median MELD 3.0 of 11 (interquartile range, 8-15) and α-fetoprotein of 6 ng/mL (interquartile range, 4-17 ng/mL). Because all models performed similarly, a parsimonious Cox-based model composed of MELD 3.0, α-fetoprotein, tumor burden, and Model of Urgency for Liver Transplantation in HCC, was selected, with a C-statistic of 0.71 (95% CI, 0.69-0.74) for 6-month dropout in the validation set, outperforming previous models, including HALT-HCC (Hazard Associated with Liver Transplantation for HCC), deMELD (Dropout Equivalent MELD), and MELD-Eq (MELD Equivalent).
An urgency-based priority system for patients with HCC, similar to MELD for patients with chronic liver disease, is achievable with a parsimonious model incorporating α-fetoprotein, MELD 3.0, and tumor size. This approach can be applied to the liver allocation system to prioritize patients with HCC and can inform decision making regarding urgency weights for exception cases in the upcoming continuous distribution system.
目前,美国肝细胞癌(HCC)患者在至少等待6个月后,会被赋予一个相对于移植时终末期肝病模型(MELD)中位数的统一评分。作者利用患者登记时可用的客观变量,为HCC患者开发了一种风险分层模型。
在器官获取与移植网络数据库中识别出2015年至2022年有获批HCC例外情况的成年肝移植候选者。使用Cox回归分析以及机器学习模型(随机生存森林和神经网络)来开发预测等待名单退出的模型。使用MELD 3.0将HCC患者的预测等待名单退出率按无例外情况的患者进行缩放。
有18273例HCC患者登记肝移植,MELD 3.0中位数为11(四分位间距,8 - 15),甲胎蛋白为6 ng/mL(四分位间距,4 - 17 ng/mL)。由于所有模型表现相似,因此选择了一个由MELD 3.0、甲胎蛋白、肿瘤负荷和HCC肝移植紧急性模型组成的简约Cox模型,验证集中6个月退出的C统计量为0.71(95%CI,0.69 - 0.74),优于先前的模型,包括HALT - HCC(HCC肝移植相关风险)、deMELD(等效退出MELD)和MELD - Eq(等效MELD)。
通过纳入甲胎蛋白、MELD 3.0和肿瘤大小的简约模型,可以实现类似于慢性肝病患者MELD的基于紧急性的HCC患者优先系统。这种方法可应用于肝脏分配系统,以对HCC患者进行优先排序,并可为即将到来的连续分配系统中例外情况的紧急性权重决策提供参考。