Wang Weiwei, Maliepaard Joshua C L, Damelang Timon, Vidarsson Gestur, Heck Albert J R, Reiding Karli R
Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
Netherlands Proteomics Center, 3584 CS Utrecht, The Netherlands.
ACS Cent Sci. 2024 Oct 10;10(11):2048-2058. doi: 10.1021/acscentsci.4c01157. eCollection 2024 Nov 27.
Although immunoglobulin G (IgG) harbors just one -glycosylation site per heavy chain, this glycosylation plays a key role in modulating its function. In human serum, IgG is classified into four subclasses (IgG1, IgG2, IgG3, IgG4), each characterized by unique features in their sequences, disulfide bridges and glycosylation signatures. While protein glycosylation is typically studied at the compositional level, this severely underestimates the complexity of the molecules involved. Glycan functionality heavily relies on the precise linkages and branching between monosaccharides, yet these features are challenging to study. Here, by development of a nanohydrophilic interaction chromatography (HILIC)-LC-MS/MS method, we reveal distinct structural glycosylation signatures for each of the four IgG subclasses, namely that IgG1 and IgG3 display predominant galactosylation of the 6-branched antenna, IgG2 instead of the 3-branched antenna, while IgG4 displays a balance. These and other subclass-specific glycostructural elements proved observable in both recombinant and endogenous IgGs as present in human plasma, in which interindividual differences and temporal stability could be demonstrated. Structural glycoproteomics is expected to fundamentally alter the way in which we study IgG, opening up a new layer of functional investigation and biomarker development, while also revealing new key structural differences between recombinant IgG subclasses in therapeutic applications.
尽管免疫球蛋白G(IgG)每条重链仅有一个糖基化位点,但这种糖基化在调节其功能中起着关键作用。在人血清中,IgG被分为四个亚类(IgG1、IgG2、IgG3、IgG4),每个亚类在其序列、二硫键和糖基化特征方面都有独特之处。虽然蛋白质糖基化通常在组成水平上进行研究,但这严重低估了所涉及分子的复杂性。聚糖功能在很大程度上依赖于单糖之间精确的连接和分支,但这些特征很难研究。在这里,通过开发一种纳米亲水相互作用色谱(HILIC)-液相色谱-串联质谱(LC-MS/MS)方法,我们揭示了四种IgG亚类各自独特的结构糖基化特征,即IgG1和IgG3在6分支天线处显示出主要的半乳糖基化,IgG2在3分支天线处,而IgG4则呈现出一种平衡。这些以及其他亚类特异性糖结构元件在重组IgG和人血浆中存在的内源性IgG中均可观察到,其中个体间差异和时间稳定性也得到了证实。结构糖蛋白质组学有望从根本上改变我们研究IgG的方式,开辟功能研究和生物标志物开发的新层面,同时也揭示治疗应用中重组IgG亚类之间新的关键结构差异。