Suppr超能文献

使用群组教学优化自动编码器的增强型物联网医疗安全框架用于入侵检测。

Enhanced IoMT security framework using group teaching optimized auto-encoder for intrusion detection.

作者信息

Manoharan Archana, Thathan Manigandan

机构信息

Department of Electronics and Communication, Dr. N.G.P Institute of Technology, Coimbatore, India.

Department of Electrical and Electronics Engineering, P.A. College of Engineering & Technology, Pollachi, Coimbatore, India.

出版信息

Sci Rep. 2024 Dec 5;14(1):30360. doi: 10.1038/s41598-024-80581-1.

Abstract

Providing security to Internet of Medical Things (IoMT) is significant worldwide problem for future generations its implementation to be successful. The traditional security methodologies developed for IoMT struggles with the specific issues of high false positives and lower detection rate. Therefore, the proposed work aims to develop a ground-breaking intrusion detection model, named as, Group Teaching Optimized Probabilistic Deep Auto-Encoder (GTPDA) for increasing the security of IoMT networks. Here, the data transformation and normalization processes are applied to balance the dataset's properties. Then, an Intriguing Group Teaching Optimization (IGTO) algorithm is applied to choose the most correlated and essential traits from the normalized dataset for effective intrusion detection. Consequently, a Conditional Probabilistic Deep Auto-Encoder (CPDAE) model is used to more accurately classify the type of intrusion with system complexity. This study uses the BoT-IoT, Kaggle invasion dataset, and ToN-IoT open benchmarking datasets for evaluation and performance assessments. Among all, the proposed GTPDA with its various performance metrics presented, achieves an impressive 98.8% precision, 99% recall, 98.8% F1-score, and 99% accuracy, showing its significant performance in ensuring IoMT network security.

摘要

为医疗物联网(IoMT)提供安全保障是一个对子孙后代来说具有重大意义的全球性问题,其成功实施至关重要。为IoMT开发的传统安全方法在误报率高和检测率低等特定问题上存在困难。因此,本研究旨在开发一种开创性的入侵检测模型,名为群组教学优化概率深度自动编码器(GTPDA),以提高IoMT网络的安全性。在这里,应用数据转换和归一化过程来平衡数据集的属性。然后,应用一种有趣的群组教学优化(IGTO)算法从归一化数据集中选择最相关和最重要的特征,以进行有效的入侵检测。随后,使用条件概率深度自动编码器(CPDAE)模型根据系统复杂性更准确地对入侵类型进行分类。本研究使用Bot-IoT、Kaggle入侵数据集和ToN-IoT开放基准数据集进行评估和性能评估。其中,所提出的GTPDA及其呈现的各种性能指标实现了令人印象深刻的98.8%的精确率、99%的召回率、98.8%的F1分数和99%的准确率,显示出其在确保IoMT网络安全方面的显著性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b9a/11621413/f718f2797713/41598_2024_80581_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验