Kaklauskas Arturas, Rajib Shaw, Piaseckiene Gintare, Kaklauskiene Loreta, Sepliakovas Jevgenijus, Lepkova Natalija, Abaravicius Zilvinas, Milevicius Virginijus, Kildiene Simona, Sapurov Martynas
Vilnius Gediminas Technical University, Vilnius, Lithuania.
Keio University, Tokyo, Japan.
Sci Rep. 2024 Dec 5;14(1):30291. doi: 10.1038/s41598-024-81562-0.
The World Bank lists flooding as one of the main pressures on a community. Flooding can affect development prospects and potentially reverse decades of progress in the alleviation of poverty and in development. Flooding-related information usually involves many stakeholders, objects, and significant details. We examined linkage between the density of 506 flood management keywords from documents found via Google Search and 32 macroenvironment indicators for 76 countries, developing 506 neural networks models. These models show that flood management keywords are interconnected with the environmental, social, economic, political, and cultural dimensions of the examined countries. The models demonstrate that improvements in a country's sustainability and performance metrics are followed by an increase in flood keyword use. Microsoft Azure AI and ChatGPT were used to generate abstractive summaries for the 100 most dense and statistically significant flood management keywords and 28 macroenvironment indicators for the individual countries included in our analysis, and for the world. We reduced the number of flood keywords density variables from 506 to 100 by selecting only the most relevant ones in order to generate abstractive summaries. Our Web of Science Sentiment Analysis Articles Model and Map of the World demonstrates that nations with an unfavorable macroenvironment published disproportionately fewer papers on sentiment analysis. This research benefits stakeholders by providing comprehensive and holistic information and data analysis, focusing on evidence-based flooding information.
世界银行将洪水列为影响社区的主要压力之一。洪水会影响发展前景,并可能使数十年在减贫和发展方面取得的进展逆转。与洪水相关的信息通常涉及众多利益相关者、对象和重要细节。我们研究了通过谷歌搜索找到的文档中506个洪水管理关键词的密度与76个国家的32个宏观环境指标之间的联系,构建了506个神经网络模型。这些模型表明,洪水管理关键词与所研究国家的环境、社会、经济、政治和文化维度相互关联。模型显示,一个国家的可持续性和绩效指标得到改善后,洪水关键词的使用量会增加。我们使用微软Azure人工智能和ChatGPT为我们分析中所包含的各个国家以及全球的100个密度最高且具有统计显著性的洪水管理关键词和28个宏观环境指标生成摘要性总结。为了生成摘要性总结,我们仅选择最相关的关键词,将洪水关键词密度变量的数量从506个减少到了100个。我们的科学网情感分析文章模型和世界地图表明,宏观环境不利的国家发表的关于情感分析的论文数量极不成比例地较少。这项研究通过提供全面且整体的信息和数据分析,聚焦于基于证据的洪水信息,使利益相关者受益。