Suppr超能文献

用于3D打印多折射率玻璃物体的无溶剂倍半硅氧烷自焊接

Solvent-Free Silsesquioxane Self-Welding for 3D Printing Multi-Refractive Index Glass Objects.

作者信息

Ye Piaoran, Hong Zhihan, Loy Douglas A, Liang Rongguang

机构信息

Wyant College of Optical Sciences, The University of Arizona, 1630 E. University Blvd, Tucson, Arizona 85721, USA.

Department of Chemistry&Biochemistry, The University of Arizona, 1306 E. University Blvd, Tucson, Arizona 85721-0041, USA.

出版信息

Adv Opt Mater. 2024 Aug 14;12(23). doi: 10.1002/adom.202400783. Epub 2024 Jun 5.

Abstract

The growing interest in 3D printing of silica glass has spurred substantial research efforts. Our prior work utilizing a liquid silica resin (LSR) demonstrated high printing accuracy and resolution. However, the resin's sensitivity to moisture posed limitations, restricting the printing environment. On the other hand, polyhedral oligomeric silsesquioxane (POSS)-based materials offer excellent water stability and sinterless features. Yet, they suffer from relatively high shrinkage due to the presence of additional organic monomers. In this study, we present a polymeric silsesquioxane (PSQ) resin with reduced shrinkage, enhanced moisture stability, and the retention of sinterless features, providing a promising solution for achieving high-resolution 3D printing of glass objects. Leveraging the two-photon polymerization (2PP) method, we realized nanostructures with feature sizes below 80 nm. Moreover, we demonstrate the tunability of the refractive index by incorporating zirconium moieties into the resin, facilitating the fabrication of glass micro-optics with varying refractive indices. Importantly, the self-welding capability observed between two individual components provides a flexible approach for producing micro-optics with multiple components, each possessing distinct refractive indices. This research represents a significant advancement in the field of advanced glass manufacturing, paving the way for future applications in micro- and nano-scale glass objects.

摘要

对二氧化硅玻璃3D打印日益增长的兴趣激发了大量的研究工作。我们之前使用液态硅树脂(LSR)的工作展示了高打印精度和分辨率。然而,该树脂对水分的敏感性带来了限制,限定了打印环境。另一方面,基于多面体低聚倍半硅氧烷(POSS)的材料具有出色的水稳定性和无烧结特性。然而,由于存在额外的有机单体,它们存在相对较高的收缩率。在本研究中,我们提出了一种具有降低收缩率、增强水分稳定性且保留无烧结特性的聚倍半硅氧烷(PSQ)树脂,为实现玻璃物体的高分辨率3D打印提供了一个有前景的解决方案。利用双光子聚合(2PP)方法,我们实现了特征尺寸低于80纳米的纳米结构。此外,我们通过将锆部分引入树脂中来证明折射率的可调性,便于制造具有不同折射率的玻璃微光学器件。重要的是,在两个单独组件之间观察到的自焊接能力为生产具有多个具有不同折射率的组件的微光学器件提供了一种灵活的方法。这项研究代表了先进玻璃制造领域的一项重大进展,为未来在微纳尺度玻璃物体中的应用铺平了道路。

相似文献

1
Solvent-Free Silsesquioxane Self-Welding for 3D Printing Multi-Refractive Index Glass Objects.
Adv Opt Mater. 2024 Aug 14;12(23). doi: 10.1002/adom.202400783. Epub 2024 Jun 5.
2
Geometric determinants of sinterless, low-temperature-processed 3D-nanoprinted glass.
Microsyst Nanoeng. 2025 Jul 17;11(1):145. doi: 10.1038/s41378-025-00983-7.
4
Micro-spring force sensors using conductive photosensitive resin fabricated via two-photon polymerization.
Microsyst Nanoeng. 2025 Aug 12;11(1):149. doi: 10.1038/s41378-025-00975-7.
5
Iterative clustering material decomposition aided by empirical spectral correction for photon counting detectors in micro-CT.
J Med Imaging (Bellingham). 2024 Dec;11(Suppl 1):S12810. doi: 10.1117/1.JMI.11.S1.S12810. Epub 2024 Dec 27.
7
Xolography for Rapid Volumetric Production of Objects from the Nanoscopic to Macroscopic Length Scales.
Adv Mater. 2025 Sep;37(37):e2503245. doi: 10.1002/adma.202503245. Epub 2025 Jun 29.
10
Atraumatic restorative treatment versus conventional restorative treatment for managing dental caries.
Cochrane Database Syst Rev. 2017 Dec 28;12(12):CD008072. doi: 10.1002/14651858.CD008072.pub2.

引用本文的文献

1
Extremely Compact 3D Printed Glass Ternary Diffractive Optical Element for Holographic Images.
Adv Opt Mater. 2025 Aug 5;13(22). doi: 10.1002/adom.202501074. Epub 2025 Jun 10.
2
Label-free surface sectioning deep ultraviolet tissue imaging in multimodalities.
Biomed Opt Express. 2025 Jun 16;16(7):2756-2766. doi: 10.1364/BOE.565070. eCollection 2025 Jul 1.
3
Geometric determinants of sinterless, low-temperature-processed 3D-nanoprinted glass.
Microsyst Nanoeng. 2025 Jul 17;11(1):145. doi: 10.1038/s41378-025-00983-7.
6
Diffractive hyperchromatic objective for chromatic confocal microscopy.
Biomed Opt Express. 2024 Nov 14;15(12):6834-6844. doi: 10.1364/BOE.543322. eCollection 2024 Dec 1.

本文引用的文献

1
3D nanopolymerization and damage threshold dependence on laser wavelength and pulse duration.
Nanophotonics. 2023 Jan 13;12(8):1537-1548. doi: 10.1515/nanoph-2022-0629. eCollection 2023 Apr.
2
Characterizing close-focus lenses for microendoscopy.
J Opt Microsyst. 2023 Jan;3(1). doi: 10.1117/1.jom.3.1.011003. Epub 2023 Jan 4.
3
A sinterless, low-temperature route to 3D print nanoscale optical-grade glass.
Science. 2023 Jun 2;380(6648):960-966. doi: 10.1126/science.abq3037. Epub 2023 Jun 1.
4
Improving glass nanostructure fabrication.
Science. 2023 Jun 2;380(6648):895-896. doi: 10.1126/science.adi2747. Epub 2023 Jun 1.
5
3D printing of glass by additive manufacturing techniques: a review.
Front Optoelectron. 2021 Sep;14(3):263-277. doi: 10.1007/s12200-020-1009-z. Epub 2020 Jul 10.
6
High-Precision Printing of Complex Glass Imaging Optics with Precondensed Liquid Silica Resin.
Adv Sci (Weinh). 2022 Jun;9(18):e2105595. doi: 10.1002/advs.202105595. Epub 2022 Apr 25.
7
Volumetric additive manufacturing of silica glass with microscale computed axial lithography.
Science. 2022 Apr 15;376(6590):308-312. doi: 10.1126/science.abm6459. Epub 2022 Apr 14.
8
Overview of 3D-Printed Silica Glass.
Micromachines (Basel). 2022 Jan 3;13(1):81. doi: 10.3390/mi13010081.
9
Two-Photon Polymerization of Nanocomposites for the Fabrication of Transparent Fused Silica Glass Microstructures.
Adv Mater. 2021 Mar;33(9):e2006341. doi: 10.1002/adma.202006341. Epub 2021 Jan 14.
10
3D printed gradient index glass optics.
Sci Adv. 2020 Nov 18;6(47). doi: 10.1126/sciadv.abc7429. Print 2020 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验