Ye Piaoran, Hong Zhihan, Loy Douglas A, Liang Rongguang
Wyant College of Optical Sciences, The University of Arizona, 1630 E. University Blvd, Tucson, Arizona 85721, USA.
Department of Chemistry&Biochemistry, The University of Arizona, 1306 E. University Blvd, Tucson, Arizona 85721-0041, USA.
Adv Opt Mater. 2024 Aug 14;12(23). doi: 10.1002/adom.202400783. Epub 2024 Jun 5.
The growing interest in 3D printing of silica glass has spurred substantial research efforts. Our prior work utilizing a liquid silica resin (LSR) demonstrated high printing accuracy and resolution. However, the resin's sensitivity to moisture posed limitations, restricting the printing environment. On the other hand, polyhedral oligomeric silsesquioxane (POSS)-based materials offer excellent water stability and sinterless features. Yet, they suffer from relatively high shrinkage due to the presence of additional organic monomers. In this study, we present a polymeric silsesquioxane (PSQ) resin with reduced shrinkage, enhanced moisture stability, and the retention of sinterless features, providing a promising solution for achieving high-resolution 3D printing of glass objects. Leveraging the two-photon polymerization (2PP) method, we realized nanostructures with feature sizes below 80 nm. Moreover, we demonstrate the tunability of the refractive index by incorporating zirconium moieties into the resin, facilitating the fabrication of glass micro-optics with varying refractive indices. Importantly, the self-welding capability observed between two individual components provides a flexible approach for producing micro-optics with multiple components, each possessing distinct refractive indices. This research represents a significant advancement in the field of advanced glass manufacturing, paving the way for future applications in micro- and nano-scale glass objects.
对二氧化硅玻璃3D打印日益增长的兴趣激发了大量的研究工作。我们之前使用液态硅树脂(LSR)的工作展示了高打印精度和分辨率。然而,该树脂对水分的敏感性带来了限制,限定了打印环境。另一方面,基于多面体低聚倍半硅氧烷(POSS)的材料具有出色的水稳定性和无烧结特性。然而,由于存在额外的有机单体,它们存在相对较高的收缩率。在本研究中,我们提出了一种具有降低收缩率、增强水分稳定性且保留无烧结特性的聚倍半硅氧烷(PSQ)树脂,为实现玻璃物体的高分辨率3D打印提供了一个有前景的解决方案。利用双光子聚合(2PP)方法,我们实现了特征尺寸低于80纳米的纳米结构。此外,我们通过将锆部分引入树脂中来证明折射率的可调性,便于制造具有不同折射率的玻璃微光学器件。重要的是,在两个单独组件之间观察到的自焊接能力为生产具有多个具有不同折射率的组件的微光学器件提供了一种灵活的方法。这项研究代表了先进玻璃制造领域的一项重大进展,为未来在微纳尺度玻璃物体中的应用铺平了道路。