Gell Martin, Eickhoff Simon B, Omidvarnia Amir, Küppers Vincent, Patil Kaustubh R, Satterthwaite Theodore D, Müller Veronika I, Langner Robert
Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.
Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany.
Nat Commun. 2024 Dec 12;15(1):10678. doi: 10.1038/s41467-024-54022-6.
Major efforts in human neuroimaging strive to understand individual differences and find biomarkers for clinical applications by predicting behavioural phenotypes from brain imaging data. To identify generalisable and replicable brain-behaviour prediction models, sufficient measurement reliability is essential. However, the selection of prediction targets is predominantly guided by scientific interest or data availability rather than psychometric considerations. Here, we demonstrate the impact of low reliability in behavioural phenotypes on out-of-sample prediction performance. Using simulated and empirical data from four large-scale datasets, we find that reliability levels common across many phenotypes can markedly limit the ability to link brain and behaviour. Next, using 5000 participants from the UK Biobank, we show that only highly reliable data can fully benefit from increasing sample sizes from hundreds to thousands of participants. Our findings highlight the importance of measurement reliability for identifying meaningful brain-behaviour associations from individual differences and underscore the need for greater emphasis on psychometrics in future research.
人类神经影像学的主要研究方向是通过从脑成像数据预测行为表型来理解个体差异,并寻找临床应用的生物标志物。为了识别可推广和可重复的脑-行为预测模型,足够的测量可靠性至关重要。然而,预测目标的选择主要受科学兴趣或数据可用性的指导,而非心理测量学方面的考虑。在此,我们证明了行为表型的低可靠性对样本外预测性能的影响。使用来自四个大规模数据集的模拟数据和实证数据,我们发现许多表型中常见的可靠性水平会显著限制将脑与行为联系起来的能力。接下来,我们利用英国生物银行的5000名参与者的数据表明,只有高度可靠的数据才能充分受益于将样本量从数百人增加到数千人。我们的研究结果凸显了测量可靠性对于从个体差异中识别有意义的脑-行为关联的重要性,并强调了在未来研究中更加强调心理测量学的必要性。