Suppr超能文献

使用隐式单步方法训练刚性神经常微分方程。

Training stiff neural ordinary differential equations with implicit single-step methods.

作者信息

Fronk Colby, Petzold Linda

机构信息

Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States.

Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States.

出版信息

Chaos. 2024 Dec 1;34(12). doi: 10.1063/5.0243382.

Abstract

Stiff systems of ordinary differential equations (ODEs) are pervasive in many science and engineering fields, yet standard neural ODE approaches struggle to learn them. This limitation is the main barrier to the widespread adoption of neural ODEs. In this paper, we propose an approach based on single-step implicit schemes to enable neural ODEs to handle stiffness and demonstrate that our implicit neural ODE method can learn stiff dynamics. This work addresses a key limitation in current neural ODE methods, paving the way for their use in a wider range of scientific problems.

摘要

常微分方程(ODE)的刚性系统在许多科学和工程领域中普遍存在,但标准的神经ODE方法在学习这些系统时面临困难。这一限制是神经ODE广泛应用的主要障碍。在本文中,我们提出了一种基于单步隐式格式的方法,以使神经ODE能够处理刚性问题,并证明我们的隐式神经ODE方法可以学习刚性动力学。这项工作解决了当前神经ODE方法中的一个关键限制,为其在更广泛的科学问题中的应用铺平了道路。

相似文献

本文引用的文献

1
3
Deep Learning and Symbolic Regression for Discovering Parametric Equations.用于发现参数方程的深度学习与符号回归
IEEE Trans Neural Netw Learn Syst. 2024 Nov;35(11):16775-16787. doi: 10.1109/TNNLS.2023.3297978. Epub 2024 Oct 29.
6
Stiff neural ordinary differential equations.刚性神经常微分方程。
Chaos. 2021 Sep;31(9):093122. doi: 10.1063/5.0060697.
8
Deep Polynomial Neural Networks.深度多项式神经网络。
IEEE Trans Pattern Anal Mach Intell. 2022 Aug;44(8):4021-4034. doi: 10.1109/TPAMI.2021.3058891. Epub 2022 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验