Omranpour Amir, Behler Jörg
Lehrstuhl für Theoretische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany.
Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, 44780 Bochum, Germany.
J Phys Condens Matter. 2024 Dec 27;37(9). doi: 10.1088/1361-648X/ad9f09.
The CoOspinel is an important material in oxidation catalysis. Its properties under catalytic conditions, i.e. at finite temperatures, can be studied by molecular dynamics simulations, which critically depend on an accurate description of the atomic interactions. Due to the high complexity of CoO, which is related to the presence of multiple oxidation states of the cobalt ions, to datemethods have been essentially the only way to reliably capture the underlying potential energy surface, while more efficient atomistic potentials are very challenging to construct. Consequently, the accessible length and time scales of computer simulations of systems containing CoOare still severely limited. Rapid advances in the development of modern machine learning potentials (MLPs) trained on electronic structure data now make it possible to bridge this gap. In this work, we employ a high-dimensional neural network potential (HDNNP) to construct a MLP for bulk CoOspinel based on density functional theory calculations. After a careful validation of the potential, we compute various structural, vibrational, and dynamical properties of the CoOspinel with a particular focus on its temperature-dependent behavior, including the thermal expansion coefficient.
CoO尖晶石是氧化催化中的一种重要材料。其在催化条件下,即在有限温度下的性质,可以通过分子动力学模拟来研究,而这关键取决于对原子相互作用的准确描述。由于CoO的高度复杂性,这与钴离子多种氧化态的存在有关,到目前为止,方法基本上是可靠捕捉潜在势能面的唯一途径,而构建更高效的原子势极具挑战性。因此,包含CoO的系统的计算机模拟可达到的长度和时间尺度仍然受到严重限制。基于电子结构数据训练的现代机器学习势(MLP)的快速发展,现在使得弥合这一差距成为可能。在这项工作中,我们基于密度泛函理论计算,采用高维神经网络势(HDNNP)为块状CoO尖晶石构建一个MLP。在对该势进行仔细验证后,我们计算了CoO尖晶石的各种结构、振动和动力学性质,特别关注其与温度相关的行为,包括热膨胀系数。