Suppr超能文献

基于全局残差网络优化压缩感知模型的平面设计图像重建

Image reconstruction in graphic design based on Global residual Network optimized compressed sensing model.

作者信息

Fu Xinxin, Tang Lujing, Bai Yingjie

机构信息

Department of Integrated Industrial Design, Hanseo University, Seosan, Republic of South Korea.

School of Design, Guangxi Normal University, Guilin, China.

出版信息

PeerJ Comput Sci. 2024 Aug 8;10:e2227. doi: 10.7717/peerj-cs.2227. eCollection 2024.

Abstract

The article aims to address the challenges of information degradation and distortion in graphic design, focusing on optimizing the traditional compressed sensing (CS) model. This optimization involves creating a co-reconstruction group derived from compressed observations of local image blocks. Following an initial reconstruction of compressed observations within similar groups, an initially reconstructed image block co-reconstruction group is obtained, featuring degraded reconstructed images. These images undergo channel stitching and are input into a global residual network. This network is composed of a non-local feature adaptive interaction module stacked with the aim of fusion to enhance local feature reconstruction. Results indicate that the solution space constraint for reconstructed images is achieved at a low sampling rate. Moreover, high-frequency information within the images is effectively reconstructed, improving image reconstruction accuracy.

摘要

本文旨在解决平面设计中信息退化和失真的挑战,重点是优化传统压缩感知(CS)模型。这种优化包括从局部图像块的压缩观测中创建一个联合重建组。在对相似组内的压缩观测进行初始重建之后,得到一个初始重建图像块联合重建组,其特征是重建图像质量下降。这些图像经过通道拼接后输入到一个全局残差网络中。该网络由一个非局部特征自适应交互模块堆叠而成,旨在通过融合来增强局部特征重建。结果表明,在低采样率下实现了重建图像的解空间约束。此外,图像中的高频信息得到有效重建,提高了图像重建精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/127f/11639127/745ba5c70766/peerj-cs-10-2227-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验