Suppr超能文献

Te - 单叶函数新子类的伯努利多项式

Bernoulli polynomials for a new subclass of Te-univalent functions.

作者信息

Saravanan G, Baskaran S, Vanithakumari B, Alnaji Lulah, Shaba Timilehin Gideon, Al-Shbeil Isra, Lupas Alina Alp

机构信息

Department of Mathematics, Faculty of Science, The University of Jordan, Amman 11942, Jordan.

Department of Mathematics, Agurchand Manmull Jain College, Meenambakkam, Chennai, 600061, Tamilnadu, India.

出版信息

Heliyon. 2024 Jul 9;10(14):e33953. doi: 10.1016/j.heliyon.2024.e33953. eCollection 2024 Jul 30.

Abstract

This paper introduces a novel subclass, denoted as , of Te-univalent functions utilizing Bernoulli polynomials. The study investigates this subclass, establishing initial coefficient bounds for , , and the Fekete-Szegö inequality, namely , are derived for this class. Additionally, several corollaries are provided to further elucidate the implications of the findings.

摘要

本文利用伯努利多项式引入了一类新的Te-单叶函数子类,记为 。该研究对这个子类进行了探讨,确定了 、 的初始系数界,并推导了该类的费克特 - 塞格不等式,即 。此外,还给出了几个推论以进一步阐明研究结果的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fadd/11639426/d4f5f0b08b9a/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验