Wang Huiqing, Han Xiao, Niu Shuaijun, Cheng Hao, Ren Jianxue, Duan Yimeng
College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China.
PLoS One. 2024 Dec 16;19(12):e0315924. doi: 10.1371/journal.pone.0315924. eCollection 2024.
Ovarian cancer is a malignant tumor with different clinicopathological and molecular characteristics. Due to its nonspecific early symptoms, the majority of patients are diagnosed with local or extensive metastasis, severely affecting treatment and prognosis. The occurrence of ovarian cancer is influenced by multiple complex mechanisms including genomics, transcriptomics, and proteomics. Integrating multiple types of omics data aids in predicting the survival rate of ovarian cancer patients. However, existing methods only fuse multi-omics data at the feature level, neglecting the shared and complementary neighborhood information among samples of multi-omics data, and failing to consider the potential interactions between different omics data at the molecular level. In this paper, we propose a prognostic model for ovarian cancer prediction named Dual Fusion Channels and Stacked Graph Convolutional Neural Network (DFASGCNS). The DFASGCNS utilizes dual fusion channels to learn feature representations of different omics data and the associations between samples. Stacked graph convolutional network is used to comprehensively learn the deep and intricate correlation networks present in multi-omics data, enhancing the model's ability to represent multi-omics data. An attention mechanism is introduced to allocate different weights to important features of different omics data, optimizing the feature representation of multi-omics data. Experimental results demonstrate that compared to existing methods, the DFASGCNS model exhibits significant advantages in ovarian cancer prognosis prediction and survival analysis. Kaplan-Meier curve analysis results indicate significant differences in the survival subgroups predicted by the DFASGCNS model, contributing to a deeper understanding of the pathogenesis of ovarian cancer and providing more reliable auxiliary diagnostic information for the prognosis assessment of ovarian cancer patients.
卵巢癌是一种具有不同临床病理和分子特征的恶性肿瘤。由于其早期症状不具有特异性,大多数患者在诊断时已出现局部或广泛转移,严重影响治疗和预后。卵巢癌的发生受基因组学、转录组学和蛋白质组学等多种复杂机制的影响。整合多种组学数据有助于预测卵巢癌患者的生存率。然而,现有方法仅在特征层面融合多组学数据,忽略了多组学数据样本间共享且互补的邻域信息,也未考虑不同组学数据在分子层面的潜在相互作用。在本文中,我们提出了一种用于卵巢癌预测的预后模型,名为双融合通道与堆叠图卷积神经网络(DFASGCNS)。DFASGCNS利用双融合通道来学习不同组学数据的特征表示以及样本间的关联。堆叠图卷积网络用于全面学习多组学数据中存在的深层且复杂的相关网络,增强模型表示多组学数据的能力。引入注意力机制为不同组学数据的重要特征分配不同权重,优化多组学数据的特征表示。实验结果表明,与现有方法相比,DFASGCNS模型在卵巢癌预后预测和生存分析中具有显著优势。Kaplan-Meier曲线分析结果表明,DFASGCNS模型预测的生存亚组存在显著差异,有助于更深入地了解卵巢癌的发病机制,并为卵巢癌患者的预后评估提供更可靠的辅助诊断信息。