Suppr超能文献

利用大语言模型改善干眼症患者教育。

Leveraging large language models to improve patient education on dry eye disease.

作者信息

Dihan Qais A, Brown Andrew D, Chauhan Muhammad Z, Alzein Ahmad F, Abdelnaem Seif E, Kelso Sean D, Rahal Dania A, Park Royce, Ashraf Mohammadali, Azzam Amr, Morsi Mahmoud, Warner David B, Sallam Ahmed B, Saeed Hajirah N, Elhusseiny Abdelrahman M

机构信息

Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.

Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.

出版信息

Eye (Lond). 2025 Apr;39(6):1115-1122. doi: 10.1038/s41433-024-03476-5. Epub 2024 Dec 16.

Abstract

BACKGROUND/OBJECTIVES: Dry eye disease (DED) is an exceedingly common diagnosis in patients, yet recent analyses have demonstrated patient education materials (PEMs) on DED to be of low quality and readability. Our study evaluated the utility and performance of three large language models (LLMs) in enhancing and generating new patient education materials (PEMs) on dry eye disease (DED).

SUBJECTS/METHODS: We evaluated PEMs generated by ChatGPT-3.5, ChatGPT-4, Gemini Advanced, using three separate prompts. Prompts A and B requested they generate PEMs on DED, with Prompt B specifying a 6th-grade reading level, using the SMOG (Simple Measure of Gobbledygook) readability formula. Prompt C asked for a rewrite of existing PEMs at a 6th-grade reading level. Each PEM was assessed on readability (SMOG, FKGL: Flesch-Kincaid Grade Level), quality (PEMAT: Patient Education Materials Assessment Tool, DISCERN), and accuracy (Likert Misinformation scale).

RESULTS

All LLM-generated PEMs in response to Prompt A and B were of high quality (median DISCERN = 4), understandable (PEMAT understandability ≥70%) and accurate (Likert Score=1). LLM-generated PEMs were not actionable (PEMAT Actionability <70%). ChatGPT-4 and Gemini Advanced rewrote existing PEMs (Prompt C) from a baseline readability level (FKGL: 8.0 ± 2.4, SMOG: 7.9 ± 1.7) to targeted 6th-grade reading level; rewrites contained little to no misinformation (median Likert misinformation=1 (range: 1-2)). However, only ChatGPT-4 rewrote PEMs while maintaining high quality and reliability (median DISCERN = 4).

CONCLUSION

LLMs (notably ChatGPT-4) were able to generate and rewrite PEMs on DED that were readable, accurate, and high quality. Our study underscores the value of leveraging LLMs as supplementary tools to improving PEMs.

摘要

背景/目的:干眼症(DED)是患者中极为常见的诊断,但最近的分析表明,关于干眼症的患者教育材料(PEMs)质量和可读性较低。我们的研究评估了三种大语言模型(LLMs)在增强和生成关于干眼症(DED)的新患者教育材料(PEMs)方面的效用和性能。

对象/方法:我们使用三个不同的提示词评估了由ChatGPT-3.5、ChatGPT-4、Gemini Advanced生成的PEMs。提示词A和B要求它们生成关于干眼症的PEMs,提示词B使用SMOG(简化晦涩度测量)可读性公式指定六年级阅读水平。提示词C要求以六年级阅读水平重写现有PEMs。每个PEM都根据可读性(SMOG、FKGL:弗莱施-金凯德年级水平)、质量(PEMAT:患者教育材料评估工具、DISCERN)和准确性(李克特错误信息量表)进行评估。

结果

所有响应提示词A和B的由大语言模型生成的PEMs质量都很高(中位数DISCERN = 4),易于理解(PEMAT可理解性≥70%)且准确(李克特评分 = 1)。由大语言模型生成的PEMs不具有可操作性(PEMAT可操作性 < 70%)。ChatGPT-4和Gemini Advanced将现有PEMs(提示词C)从基线可读性水平(FKGL:8.0 ± 2.4,SMOG:7.9 ± 1.7)重写到目标六年级阅读水平;重写内容几乎没有错误信息(中位数李克特错误信息 = 1(范围:1 - 2))。然而,只有ChatGPT-4在保持高质量和可靠性的同时重写了PEMs(中位数DISCERN = 4)。

结论

大语言模型(特别是ChatGPT-4)能够生成和重写关于干眼症的PEMs,这些PEMs具有可读性、准确性和高质量。我们的研究强调了利用大语言模型作为改进PEMs的辅助工具的价值。

相似文献

1
Leveraging large language models to improve patient education on dry eye disease.
Eye (Lond). 2025 Apr;39(6):1115-1122. doi: 10.1038/s41433-024-03476-5. Epub 2024 Dec 16.
2
Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models.
Neurol Clin Pract. 2025 Feb;15(1):e200366. doi: 10.1212/CPJ.0000000000200366. Epub 2024 Oct 8.
3
Implementing Generative AI to Enhance Patient Education on Retinopathy of Prematurity.
J Pediatr Ophthalmol Strabismus. 2025 Jun 27:1-10. doi: 10.3928/01913913-20250515-01.
5
Using Large Language Models to Generate Educational Materials on Childhood Glaucoma.
Am J Ophthalmol. 2024 Sep;265:28-38. doi: 10.1016/j.ajo.2024.04.004. Epub 2024 Apr 16.
6
Large language models: a new frontier in paediatric cataract patient education.
Br J Ophthalmol. 2024 Sep 20;108(10):1470-1476. doi: 10.1136/bjo-2024-325252.
8
Large Language Models: Pioneering New Educational Frontiers in Childhood Myopia.
Ophthalmol Ther. 2025 Jun;14(6):1281-1295. doi: 10.1007/s40123-025-01142-x. Epub 2025 Apr 21.
10
Is Information About Musculoskeletal Malignancies From Large Language Models or Web Resources at a Suitable Reading Level for Patients?
Clin Orthop Relat Res. 2025 Feb 1;483(2):306-315. doi: 10.1097/CORR.0000000000003263. Epub 2024 Sep 25.

引用本文的文献

1
Large language models in the management of chronic ocular diseases: a scoping review.
Front Cell Dev Biol. 2025 Jun 18;13:1608988. doi: 10.3389/fcell.2025.1608988. eCollection 2025.
2
Dall-E in hand surgery: Exploring the utility of ChatGPT image generation.
Surg Open Sci. 2025 May 10;26:64-78. doi: 10.1016/j.sopen.2025.04.012. eCollection 2025 Jun.
4
Enhancing Patient Comprehension of Glomerular Disease Treatments Using ChatGPT.
Healthcare (Basel). 2024 Dec 31;13(1):57. doi: 10.3390/healthcare13010057.

本文引用的文献

2
Establishing priorities for implementation of large language models in pathology and laboratory medicine.
Acad Pathol. 2024 Jan 11;11(1):100101. doi: 10.1016/j.acpath.2023.100101. eCollection 2024 Jan-Mar.
3
The Use of Large Language Models to Generate Education Materials about Uveitis.
Ophthalmol Retina. 2024 Feb;8(2):195-201. doi: 10.1016/j.oret.2023.09.008. Epub 2023 Sep 15.
4
Assessment of Artificial Intelligence Chatbot Responses to Top Searched Queries About Cancer.
JAMA Oncol. 2023 Oct 1;9(10):1437-1440. doi: 10.1001/jamaoncol.2023.2947.
5
Ethical Considerations of Using ChatGPT in Health Care.
J Med Internet Res. 2023 Aug 11;25:e48009. doi: 10.2196/48009.
6
Reticular Pseudodrusen: Interreader Agreement of Evaluation on OCT Imaging in Age-Related Macular Degeneration.
Ophthalmol Sci. 2023 May 5;3(4):100325. doi: 10.1016/j.xops.2023.100325. eCollection 2023 Dec.
7
Using Generative AI to Produce Images for Nursing Education.
Nurse Educ. 2023;48(5):246. doi: 10.1097/NNE.0000000000001453. Epub 2023 May 10.
8
Prevalence of Dry Eye Symptoms and Associated Risk Factors among University Students in Poland.
Int J Environ Res Public Health. 2023 Jan 11;20(2):1313. doi: 10.3390/ijerph20021313.
9
Assessment of the readability and quality of online patient education materials for the medical treatment of open-angle glaucoma.
BMJ Open Ophthalmol. 2022 Mar 28;7(1):e000966. doi: 10.1136/bmjophth-2021-000966. eCollection 2022.
10
Assessing the Quality, Reliability, and Readability of Online Information on Dry Eye Disease.
Cornea. 2022 Aug 1;41(8):1023-1028. doi: 10.1097/ICO.0000000000003034. Epub 2022 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验